HOMEWORK #9

NOT TO BE TURNED IN

Problem 1. Find all ideals of $\mathbb{Q}[x]$ containing $(x^4 - 1)$. For each ideal you find, determine whether it is maximal, prime, both, or neither.

Problem 2 (D&F 9.2.4). Let F be a finite field. Prove that F[x] contains infinitely many primes.

Problem 3 (D&F 9.4.1,2). Determine whether the following polynomials are irreducible in the rings indicated. For those that are reducible, determine their factorization into irreducibles. Let \mathbb{F}_p denote the finite field $\mathbb{Z}/p\mathbb{Z}$:

- (a) $x^2 + x + 1$ in $\mathbb{F}_2[x]$.
- (b) $x^4 4x^3 + 6$ in $\mathbb{Z}[x]$.
- (c) $x^6 + 30x^5 15x^3 + 6x 120$ in $\mathbb{Z}[x]$.
- (d) $x^4 + 1$ in $\mathbb{F}_5[x]$.
- (e) $x^3 + x + 1$ in $\mathbb{F}_3[x]$.
- (f) $x^4 + 4x^3 + 6x^2 + 2x + 1$ in $\mathbb{Z}[x]$.

Problem 4 (D&F 9.4.3). Show that the polynomial $(x - 1)(x - 2) \cdots (x - n) - 1$ is irreducible in $\mathbb{Z}[x]$ for all $n \ge 1$.

[Hint: Note that in a UFD, the fundamental theorem of arithmetic holds.]

Problem 5 (D&F 9.4.6). Construct a field of order 9. You may exhibit this field as F[x]/(f(x)) for some F and f. You may use D&F problem 9.2.2.

Problem 6 (D&F 9.4.11). Prove that $x^2 + y^2 - 1$ is irreducible in $\mathbb{Q}[x, y]$.

Problem 7 (D&F 9.4.14). Factor the polynomials $x^8 - 1$ and $x^6 - 1$ into irreducibles in each of the following rings:

- (a) $\mathbb{Z}[x]$
- (b) $\mathbb{Z}/2\mathbb{Z}[x]$
- (c) $\mathbb{Z}/3\mathbb{Z}[x]$