HOMEWORK \#9

NOT TO BE TURNED IN

Problem 1. Find all ideals of $\mathbb{Q}[x]$ containing $\left(x^{4}-1\right)$. For each ideal you find, determine whether it is maximal, prime, both, or neither.

Problem 2 (D\&F 9.2.4). Let F be a finite field. Prove that $F[x]$ contains infinitely many primes.
Problem 3 (D\&F 9.4.1,2). Determine whether the following polynomials are irreducible in the rings indicated. For those that are reducible, determine their factorization into irreducibles. Let \mathbb{F}_{p} denote the finite field $\mathbb{Z} / p \mathbb{Z}$:
(a) $x^{2}+x+1$ in $\mathbb{F}_{2}[x]$.
(b) $x^{4}-4 x^{3}+6$ in $\mathbb{Z}[x]$.
(c) $x^{6}+30 x^{5}-15 x^{3}+6 x-120$ in $\mathbb{Z}[x]$.
(d) $x^{4}+1$ in $\mathbb{F}_{5}[x]$.
(e) $x^{3}+x+1$ in $\mathbb{F}_{3}[x]$.
(f) $x^{4}+4 x^{3}+6 x^{2}+2 x+1$ in $\mathbb{Z}[x]$.

Problem 4 (D\&F 9.4.3). Show that the polynomial $(x-1)(x-$ 2) $\cdots(x-n)-1$ is irreducible in $\mathbb{Z}[x]$ for all $n \geq 1$.
[Hint: Note that in a UFD, the fundamental theorem of arithmetic holds.]
Problem 5 ($\mathbf{D} \& \mathbf{F}$ 9.4.6). Construct a field of order 9. You may exhibit this field as $F[x] /(f(x))$ for some F and f. You may use $\mathrm{D} \& \mathrm{~F}$ problem 9.2.2.

Problem 6 (D\&F 9.4.11). Prove that $x^{2}+y^{2}-1$ is irreducible in $\mathbb{Q}[x, y]$.
Problem 7 (D\&F 9.4.14). Factor the polynomials $x^{8}-1$ and $x^{6}-1$ into irreducibles in each of the following rings:
(a) $\mathbb{Z}[x]$
(b) $\mathbb{Z} / 2 \mathbb{Z}[x]$
(c) $\mathbb{Z} / 3 \mathbb{Z}[x]$

