HOMEWORK \#7

DUE 11/06/13 AT START OF CLASS

Problem 1. Find all ring homomorphisms $\mathbb{Z} \rightarrow \mathbb{Z}$.

Problem $2(\mathrm{D} \& \mathbf{F}$ 7.3.10). Determine which of the following are ideals of the ring $\mathbb{Z}[x]$. Justify your answers.
(a) the set of all polynomials whose constant term is a multiple of 3.
(b) the set of all polynomials whose coefficient of x^{2} is a multiple of 3 .
(c) the set of all polynomials in which only even powers of x appear.
(d) the set of all polynomials whose constant term, coefficient of x, and coefficient of x^{2} are 0 .
(e) the set of polynomials whose coefficients sum to zero
(f) the set of polynomials $p(x)$ such that $p^{\prime}(0)=0$, where $p^{\prime}(x)$ is the usual first derivative of $p(x)$ with respect to x.

Problem $3(\mathbf{D} \& \mathbf{F} 7.3 .17)$. Let R and S be nonzero rings with identity. Let $\phi: R \rightarrow S$ be a nonzero homomorphism of rings.
(a) Prove that if $\phi\left(1_{R}\right) \neq 1_{S}$ then $\phi\left(1_{R}\right)$ is a zero divisor in S. Deduce that if S is an integral domain then every nonzero ring homomorphism from R to S sends the identity of R to the identity of S.
(b) Prove that if $\phi\left(1_{R}\right)=1_{S}$ then $\phi(u)$ is a unit in S and $\phi\left(u^{-1}\right)=$ $\phi(u)^{-1}$ for each unit u of R.

Problem $4(\mathrm{D} \& \mathbf{F} \mathbf{7 . 3 . 2 6}, 28)$. The characteristic of a ring R is the smallest postive integer n such that $1+1+\cdots+1=0$ (n times) in R; if no such integer exists the characteristic of R is said to be 0 .
(a) Determine the characteristic of the rings $\mathbb{Q}, \mathbb{Z}[x], \mathbb{Z} / n \mathbb{Z}[x]$.
(b) Prove that if p is a prime and R is a commutative ring of characteristic p then $(a+b)^{p}=a^{p}+b^{p}$ for all $a, b \in R$. (you may use $\mathrm{D} \& \mathrm{~F} 7.3 .25$).
(c) Prove that an integral domain has characteristic p, where p is either a prime or 0 .

Problem 5 ($\mathbf{D} \& \mathbf{F}$ 7.3.34). Let I and J be ideals of R. For the definition of $I+J$ and $I J$, see page 247 of D\&F.
(a) Prove that $I+J$ is the smallest ideal of R containing both I and J.
(b) Prove that $I J$ is an ideal contained in $I \cap J$.
(c) Give an example where $I J \neq I \cap J$.
(d) Prove that if R is commutative with identity and $I+J=R$ then $I J=I \cap J$.

Problem 6 (D\&F 7.4.8). Let R be an integral domain. Prove that $(a)=(b)$ for some elements $a, b \in R$ if and only if $a=u b$ for some unit u of R.

Problem 7 (D\&F 7.4.17). You may want to read and work through problem 7.4.14 before considering this problem. Let $x^{3}-2 x+1$ be an element of the polynomial ring $\mathbb{Z}[x]$ and use the bar notation to denote passage to the quotient ring $\mathbb{Z}[x] /\left(x^{3}-2 x+1\right)$. Let $p(x)=$ $2 x^{7}-7 x^{5}+4 x^{3}-9 x+1$.
(a) Express $p(x)$ in the form $\overline{f(x)}$ for some polynomial $f(x)$ of degree ≤ 2.
(b) Prove that $\mathbb{Z}[x] /\left(x^{3}-2 x+1\right)$ is not an integral domain.

Problem 8 ($\mathbf{D} \& \mathbf{F}$ 7.4.19). Let R be a finite commutative ring with identity. Prove that every prime ideal of R is a maximal ideal.
Challenge Problem. Find an ideal I such that $\mathbb{R}[x] / I \cong \mathbb{C}$. Under this isomorphism, what does i correspond to?

