HOMEWORK \#5

DUE 10/23/13 AT START OF CLASS

Problem 1 (D\&F 3.3.3). Let G be a group, H a normal subgroup of G with $[G: H]=p$ for some prime p. Prove for all subgroups $K \leq G$ that either
(i) $K \leq H$, or
(ii) $G=H K$ and $|K: K \cap H|=p$.

Problem 2. Let n and m be positive integers. Let $[n, m]$ denote the least common multiple of n and m
(a) Use the First Isomorphism Theorem to show that there is an injective homomorphism of $\mathbb{Z} /[n, m] \mathbb{Z}$ into the direct product $\mathbb{Z} / n \mathbb{Z} \times \mathbb{Z} / m \mathbb{Z}$.
(b) Show that your map in part (a) is surjective (and therefore an isomorphism) if and only if $(n, m)=1$. Conclude that in this case $\mathbb{Z} / n m \mathbb{Z} \cong \mathbb{Z} / n \mathbb{Z} \times \mathbb{Z} / m \mathbb{Z}$.

Problem 3. Let $\mathbb{Z}[x]$ denote the set of polynomials with coefficients in \mathbb{Z}. It is clear that $\mathbb{Z}[x]$ is an additive group.
(a) Define $\phi: \mathbb{Z}[x] \rightarrow \mathbb{Z}$ by $\phi(f)=f(0)$. Show that ϕ is a surjective homomorphism and compute its kernel. What statement does the first isomorphism theorem yield?
(b) Do the same as above with $\phi: \mathbb{Z}[x] \rightarrow \mathbb{Z}$ defined by $\phi(f)=f(3)$.

Problem 4 (D\&F 3.4.2). Exhibit all three composition series for the quaternions Q_{8}. List the composition factors in each case.

Problem 5 ($\mathbf{D} \& \mathbf{F}$ 3.4.12). A group G is solvable if there is a chain of subgroups

$$
1=G_{0} \unlhd G_{1} \unlhd \cdots \unlhd G_{s}=G
$$

such that G_{i} / G_{i-1} is abelian for $i=1, \ldots, s$. Prove, without using the Feit-Thompson Theorem, that the following are equivalent:
(i) every group of odd order is solvable.
(ii) the only simple groups of odd order are those of prime order.

Problem 6 (D\&F 3.5.3,4).
(a) Prove that S_{n} is generated by $\{(i i+1) \mid 1 \leq i \leq n-1\}$.
(b) Prove that $S_{n}=\langle(12),(12 \ldots n)\rangle$ for $n \geq 2$.

Challenge Problem. Prove that the 15-puzzle arrangement given in class is unsolvable.

Problem 7 ($\mathbf{D} \& \mathbf{F}$ 1.7.5). For a group action of G on A, the kernel of the action is the set $\{g \in G \mid g . a=a \forall a \in A\}$. Prove that the kernel of the action of the group G on the set A is the same as the kernel of the corresponding permutation representation $\phi: G \rightarrow S_{A}$.

Problem 8 (D\&F 4.2.8). Prove that if H has finite index n in G then there is a normal subgroup K of G with $K \leq H$ and $[G: K] \leq n!$.

Problem 9 (D\&F 4.2.10). Prove that every non-abelian group of order 6 has a non normal subgroup of order 2 . Use this to classify all groups of order 6 (produce an injective homomorphism into S_{3}).

Problem 10 ($\mathbf{D} \& \mathbf{F}$ 4.3.5). If the center of G is of index n, prove that every conjugacy class has at most n elements.

Problem 11 ($\mathbf{D} \& \mathbf{F}$ 4.3.6). Assume that G is a non-abelian group of order 15. Prove that $Z(G)=1$. Use the fact that $\langle g\rangle \leq C_{G}(g)$ for all $g \in G$ to show there is at most one possible class equation for G.
Problem 12 ($\mathbf{D} \& \mathbf{F}$ 4.3.7). For $n=6$ make a list of the partitions of n and give representatives for the corresponding conjugacy classes of S_{n} (read pgs 125-128).

