HOMEWORK \#2

DUE 10/2/13 AT START OF CLASS

Problem 1 ($\mathbf{D} \& \mathbf{F}$ 1.2.2,3). Consider the dihedral group $D_{2 n}$ with the usual presentation $D_{2 n}=\left\langle r, s \mid r^{n}=s^{2}=1, r s=s r^{-1}\right\rangle$. Use these generators and relations to show:
(a) If $x \in D_{2 n}$ is not a power of r, then $r x=x r^{-1}$.
(b) Every element of $D_{2 n}$ which is not a power of r has order 2 .

Problem 2 ($\mathbf{D} \& \mathbf{F}$ 1.2.13). Recall that a regular icosahedron is a 20 -faced polyhedron, with each face an equilateral triangle. Let G be the group of rigid motions in \mathbb{R}^{3} (symmetries) of a regular icosahedron. Show that $|G|=60$.

Problem 3 (D\&F 1.3.1). Let σ be the permutation

$$
1 \mapsto 3 \quad 2 \mapsto 4 \quad 3 \mapsto 5 \quad 4 \mapsto 2 \quad 5 \mapsto 1
$$

and let τ be the permutation

$$
1 \mapsto 5 \quad 2 \mapsto 3 \quad 3 \mapsto 2 \quad 4 \mapsto 4 \quad 5 \mapsto 1
$$

Find the cycle decompositions of each of the following permutations:

$$
\sigma, \tau, \sigma^{2}, \sigma \tau, \tau \sigma, \tau^{2} \sigma
$$

Problem 4 (D\&F 1.3.10). Prove that if σ is the m-cycle $\left(a_{1} a_{2} \ldots a_{m}\right)$ then for all $1 \leq i \leq m, \sigma^{i}\left(a_{k}\right)=a_{k+i}$, where $k+i$ is replaced by its least positive residue $\bmod m$. Deduce that $|\sigma|=m$.

Problem 5 (D\&F 1.3.9,11).

(a) Let σ be the 10-cycle (12345678910). For which positive integers i is σ^{i} also a 10 -cycle?
(b) Let τ be the 8 -cycle (12345678). For which positive integers i is τ^{i} also a 8-cycle?
(c) Let σ be the m-cycle ($12 \ldots m$). Using parts (a) and (b), complete the following statement:

$$
\sigma^{i} \text { is an m-cycle if and only if... }
$$

Challenge: Prove this.

Problem 6 (D\&F 1.3.15). Prove that the order of an element in S_{n} equals the least common multiple of the lengths of the cycles in its cycle decomposition.
[Hint: Use Problem 5 from Homework\#1]
Problem 7 (D\&F 1.4.4). Show that if n is not prime then $\mathbb{Z} / n \mathbb{Z}$ is not a field.

Problem 8 (D\&F 1.6.3). Let G, H be groups. If $\phi: G \rightarrow H$ is an isomorphism, prove that G is abelian if and only if H is abelian.

Problem 9 (D\&F 1.6.11). Let G, H be groups. Prove that $G \times H \cong$ $H \times G$.

Problem 10 (D\&F 1.6.14). Let G, H be groups and $\phi: G \rightarrow H$ a homomorphism. Define the kernel of ϕ to be

$$
\operatorname{ker}(\phi)=\left\{g \in G \mid \phi(g)=e_{H}\right\} .
$$

Prove that ϕ is injective if and only if $\operatorname{ker}(\phi)=\left\{e_{G}\right\}$.
Problem 11 (D\&F 1.6.17). Let G be a group. Prove that the map from G to itself defined by $g \mapsto g^{-1}$ is a homomorphism if and only if G is abelian.

Challenge Problem. Consider the symmetric group S_{n}. Show that the two elements (12) and (12 $\ldots n$) form a generating set for S_{n}.

