HOMEWORK #1

DUE 9/25/13 AT START OF CLASS

Problem 1 (D&F 0.3.3). Recall that an integer is divisible by 9 if and only if the sum of its digits is divisible by 9. In fact, the remainder of any positive integer after division by 9 is the same as the sum of the digits modulo 9. Prove this.

[Hint: let $a = a_n 10^n + a_{n-1} 10^{n-1} + \dots + a_1 10 + a_0$ be any positive integer.]

Problem 2 (D&F 0.3.11, 12, 13). Consider the set

$$(\mathbb{Z}/n\mathbb{Z})^{\times} = \{ [a] \in \mathbb{Z}/n\mathbb{Z} \mid \exists [c] \in \mathbb{Z}/n\mathbb{Z} \text{ with } [a][c] = [1] \}.$$

- (a) Prove that if $[a], [b] \in (\mathbb{Z}/n\mathbb{Z})^{\times}$, then so is [a] * [b].
- (b) Let $n \in \mathbb{Z}$, n > 1 and let $a \in \mathbb{Z}$ with $1 \le a \le n$. Prove that if a and n are not relatively prime, there exists an integer b with $1 \le b < n$ such that $ab \equiv 0 \pmod{n}$ and deduce that there cannot be an integer c such that $ac \equiv 1 \pmod{n}$.
- (c) Let $n \in \mathbb{Z}$, n > 1 and let $a \in \mathbb{Z}$ with $1 \le a \le n$. Prove that if a and n are relatively prime then there is an integer c such that $ac \equiv 1 \pmod{n}$.

[Hint: use the fact that the g.c.d of two integers is a \mathbb{Z} -linear combination of the integers: read Section 0.2.]

(d) Conclude Proposition 0.3.4 and that $(\mathbb{Z}/n\mathbb{Z})^{\times}$ is a group under multiplication of congruence classes.

Problem 3 (D&F 0.1.5). Determine whether the following functions f are well-defined:

- (a) $f: \mathbb{Q} \to \mathbb{Z}$ defined by $f(\frac{a}{b}) = a$.
- (b) $f: \mathbb{Q} \to \mathbb{Q}$ defined by $f(\frac{a}{b}) = \frac{a^2}{b^2}$

Problem 4 (D&F 0.1.7). Let A and B be sets and let f be a map from A to B.

(a) Prove that the relation

 $a \sim b$ if and only if f(a) = f(b)

is an equivalence relation.

(b) Now suppose f is a surjective map. Prove that the equivalence classes of the relation in (a) are the fibers of f.

Problem 5 (D&F 1.1.24). Let G be a group. If a and b are commuting elements of G prove that $(ab)^n = a^n b^n$ for all $n \in \mathbb{Z}$. [Hint: do this first for positive n.]

Problem 6 (D&F 1.1.25). Let G be a group. Prove that if $x^2 = 1$ for all $x \in G$ then G is abelian.

Problem 7 (D&F 1.1.17). Let G be a group. Let x be an element of G. Prove that if |x| = n for some positive integer n then $x^{-1} = x^{n-1}$.

Problem 8 (D&F 1.1.32). Let G be a group. If x is an element of finite order n in G, prove that the elements $1, x, x^2, \ldots x^{n-1}$ are all distinct. Deduce that $|x| \leq |G|$.

Challenge Problem. Use Problems 7 and 8 to prove the following: If G is a group of order 4, then either G has an element of order 4 or every nonidentity element of G has order 2.