HOMEWORK \#1

DUE 9/25/13 AT START OF CLASS

Problem 1 (D\&F 0.3.3). Recall that an integer is divisible by 9 if and only if the sum of its digits is divisible by 9 . In fact, the remainder of any positive integer after division by 9 is the same as the sum of the digits modulo 9 . Prove this.
[Hint: let $a=a_{n} 10^{n}+a_{n-1} 10^{n-1}+\cdots+a_{1} 10+a_{0}$ be any positive integer.]
Problem 2 (D\&F 0.3.11,12,13). Consider the set

$$
(\mathbb{Z} / n \mathbb{Z})^{\times}=\{[a] \in \mathbb{Z} / n \mathbb{Z} \mid \exists[c] \in \mathbb{Z} / n \mathbb{Z} \text { with }[a][c]=[1]\} .
$$

(a) Prove that if $[a],[b] \in(\mathbb{Z} / n \mathbb{Z})^{\times}$, then so is $[a] *[b]$.
(b) Let $n \in \mathbb{Z}, n>1$ and let $a \in \mathbb{Z}$ with $1 \leq a \leq n$. Prove that if a and n are not relatively prime, there exists an integer b with $1 \leq b<n$ such that $a b \equiv 0(\bmod n)$ and deduce that there cannot be an integer c such that $a c \equiv 1(\bmod n)$.
(c) Let $n \in \mathbb{Z}, n>1$ and let $a \in \mathbb{Z}$ with $1 \leq a \leq n$. Prove that if a and n are relatively prime then there is an integer c such that $a c \equiv 1(\bmod n)$.
[Hint: use the fact that the g.c.d of two integers is a \mathbb{Z}-linear combination of the integers: read Section 0.2.]
(d) Conclude Proposition 0.3.4 and that $(\mathbb{Z} / n \mathbb{Z})^{\times}$is a group under multiplication of congruence classes.

Problem 3 (D\&F 0.1.5). Determine whether the following functions f are well-defined:
(a) $f: \mathbb{Q} \rightarrow \mathbb{Z}$ defined by $f\left(\frac{a}{b}\right)=a$.
(b) $f: \mathbb{Q} \rightarrow \mathbb{Q}$ defined by $f\left(\frac{a}{b}\right)=\frac{a^{2}}{b^{2}}$

Problem 4 ($\mathbf{D} \& \mathbf{F}$ 0.1.7). Let A and B be sets and let f be a map from A to B.
(a) Prove that the relation
$a \sim b$ if and only if $f(a)=f(b)$
is an equivalence relation.
(b) Now suppose f is a surjective map. Prove that the equivalence classes of the relation in (a) are the fibers of f.

Problem 5 (D\&F 1.1.24). Let G be a group. If a and b are commuting elements of G prove that $(a b)^{n}=a^{n} b^{n}$ for all $n \in \mathbb{Z}$.
[Hint: do this first for positive n.]
Problem 6 (D\&F 1.1.25). Let G be a group. Prove that if $x^{2}=1$ for all $x \in G$ then G is abelian.

Problem 7 ($\mathbf{D} \& \mathbf{F}$ 1.1.17). Let G be a group. Let x be an element of G. Prove that if $|x|=n$ for some positive integer n then $x^{-1}=x^{n-1}$.
Problem $8(\mathbf{D} \& \mathbf{F}$ 1.1.32). Let G be a group. If x is an element of finite order n in G, prove that the elements $1, x, x^{2}, \ldots x^{n-1}$ are all distinct. Deduce that $|x| \leq|G|$.
Challenge Problem. Use Problems 7 and 8 to prove the following: If G is a group of order 4, then either G has an element of order 4 or every nonidentity element of G has order 2 .

