13. Let C be a cyclic group, and let $\varphi: G \rightarrow C$ be any surjective homomorphism with ker $\varphi \subseteq Z(G)$. Show that G is abelian. Hint: Show every $g \in G$ can be written as $z x^{i}$ where $z \in Z(G)$ and $C=\langle\varphi(x)\rangle$.
14. Show that if a group G has a subgroup of finite index, then G has a normal subgroup of finite index. What is an upper bound for the index of the normal subgroup in terms of the index of the subgroup? Hint: Consider the action of G on G / H, where $H \leq G$ has finite index.
15. Let S be a G-set. If $s \in S$ and $a \in G$, show that the stabilizers of s and $a \cdot s$ are related by $G_{a s}=a G_{s} a^{-1}$.
16. If a group G has order $p q$ where p and q are (not necessarily distinct) primes, show that either G is abelian or $Z(G)=\{1\}$. (Hint: Use problem 13 above.) Can both possibilities occur?
17. What is the class equation of the dihedral group D_{5} ?
18. Is $D_{4} \approx H$, where H is the quaternion group?
19. Find all subgroups of \mathbf{Z} containing $12 \mathbf{Z}$ and arrange them in a lattice. Then use the correspondence theorem to exhibit the lattice of all subgroups of $\mathbf{Z} / 12 \mathbf{Z}$.
20. Show that every group of order p^{3}, where p is a prime, has normal subgroups of order p and p^{2}.
21. Assume that R and R^{\prime} are rings and $\varphi: R \rightarrow R^{\prime}$ is a function which preserves addition and multiplication. Show that if $\varphi(1) \neq 1$, then $\varphi(1)$ is a zero divisor of R^{\prime}. (Zero divisors are defined near the bottom of page 368.)
22. Show that every ideal of the ring $\mathbf{Z} / n \mathbf{Z}=\mathbf{Z} /(n)$ is principle. (Hint: Show every subgroup is cyclic. This can be done quickly using the usual ring map $\pi: \mathbf{Z} \rightarrow \mathbf{Z} / n \mathbf{Z}$, the first test problem and. ... Another approach is to use the correspondence theorem.)
23. Show that the characteristic of an integral domain is a prime or zero.
24. Let r be a nonzero, nonunit element of an integral domain R. Show that r is irreducible if and only if (r) is maximal among all principle ideals of R. " (r) is maximal among all principle ideals of R " means that whenever (a) is a principle ideal in R satisfying $(r) \subseteq(a) \subseteq R$, either $(a)=R$ or $(a)=(r)$.
25. Show that irreducible elements in a UFD are prime elements.
