1. In this problem, you may cite familiar facts from linear algebra without proving them. For instance, you do not need to prove that matrix multiplication is associative.
(a) Is the set $S=\left\{\left(\begin{array}{ll}1 & a \\ 0 & 1\end{array}\right): a \in \mathbf{R}\right\}$ with matrix multiplication as the law of composition a group?
(b) Same question but with the set $S=\left\{\left(\begin{array}{cc}a & 0 \\ 0 & 0\end{array}\right): a \in \mathbf{R}^{\times}\right\}$.
2. Assume that G is a group with every $x \in G$ satisfying $x^{2}=1$, the identity element. Show that G is abelian.
3. Identify (as one of the subgroups we've considered) the kernel of the homomorphism $\varphi: G \rightarrow \operatorname{Aut}(G)$ defined by $a \mapsto\left(g \mapsto a g a^{-1}\right)$.
4. Is $\mathcal{P}_{n}=\left\{\right.$ set of permutation matrices in $\left.\mathrm{GL}_{\mathrm{n}}(\mathbf{R})\right\}$. Is \mathcal{P}_{n} a normal subgroup of $G L_{n}(\mathbf{R})$?
5. Assume $H \leq G$ and let $g \in G$.
(a) Prove that $g H g^{-1}=\left\{g h g^{-1}: h \in H\right\}$ is a subgroup of G of the same order as H.
(b) Show that if H is the only subgroup of G with order $|H|$, then H is a normal subgroup of G.
(Hint: Part (a) can be done quickly using problem 3, page 72. For part (b), you may use problem 13(b), page 72.)
6. What is $Z\left(S_{3}\right)$, the center of the symmetric group S_{3} ?
7. Let T be the set of equilateral triangles in the plane with the equivalence relation $s \sim t \Leftrightarrow s$ is congruent to t. Define a function $T \rightarrow X$, where X is a familiar set, such that there is a bijection $T / \sim \longrightarrow X$ induced by f.
8. Let G be a group. The image of the homomorphism φ of problem 3 above is called the inner automorphism group of G, and denoted by $\operatorname{Inn}(G)$. Prove that $G / Z(G) \approx$ $\operatorname{Inn}(G)$. To what familiar group is $\operatorname{Inn}\left(S_{3}\right)$ isomorphic?
9. Let G be a group with normal subgroups H and K. Assume $K \subseteq H$. Then $H / K \leq G / K$. Prove that H / K is a normal subgroup of G / K and that $\frac{G / K}{H / K} \approx G / H$. (Hint: Define a homomorphism $G / K \rightarrow G / H$ whose kernel is H / K, and use the first isomorphism theorem.) To what familiar group is $\frac{\mathbf{Z} / 60 \mathbf{Z}}{\langle\overline{15}\rangle}$ isomorphic?
10. Show that \mathbf{Q}^{+}, the group of rationals under addition, is not the direct product of two nontrivial groups.
11. Identify the quotient group $H / Z(H)$, where H is the quaternion group and $Z(H)$ its center.
12. Homomorphisms of cyclic groups
(a) Explicitly describe all homomorphisms from $\mathbf{Z} / n \mathbf{Z}$ to \mathbf{Z}, where n is a positive integer.
(b) For which positive integers m and n is there a homomorphism $\mathbf{Z} / m \mathbf{Z} \rightarrow \mathbf{Z} / n \mathbf{Z}$ given by sending $1+m \mathbf{Z}$ to $1+n \mathbf{Z}$?
