In this problem, you may cite familiar facts from linear algebra without proving them. For instance, you do not need to prove that matrix multiplication is associative.
 (a) Is the set S = { (^{1a}₀₁) : a ∈ R} with matrix multiplication as the law of composition a group?

(b) Same question but with the set $S = \{ \begin{pmatrix} a & 0 \\ 0 & 0 \end{pmatrix} : a \in \mathbf{R}^{\times} \}.$

- 2. Assume that G is a group with every $x \in G$ satisfying $x^2 = 1$. Show that G is abelian.
- 3. Identify (as one of the subgroups we've considered) the kernel of the homomorphism $\varphi: G \to Aut(G)$ defined by $a \to (g \mapsto aga^{-1})$.
- 4. Is $\mathcal{P}_n = \{\text{set of permutation matrices in } \operatorname{GL}_n(\mathbf{R})\}$. Is \mathcal{P}_n a normal subgroup of $\operatorname{GL}_n(\mathbf{R})$?
- 5. Let T be the set of equilateral triangles in the plane with the equivalence relation $s \sim t \Leftrightarrow s$ is congruent to t. Define a function $T \to X$, where X is a familiar set, such that there is a bijection $T/\sim \longrightarrow X$ induced by f.
- 6. Assume H ≤ G and let g ∈ G.
 (a) Prove that gHg⁻¹ = {ghg⁻¹ : h ∈ H} is a subgroup of G of the same order as H.
 (b) Show that if H is the only subgroup of G with order |H|, then H is a normal subgroup of G.
- 7. Find all subgroups of the symmetric group S_3 . Which are normal? Which is Z(G), the center of G?
- 8. Let G be a group. The image of the homomorphism φ of problem 3 above is called the inner automorphism group of G, and denoted by InnAut(G). Prove that $G/Z(G) \approx InnAut(G)$. To what familiar group is $InnAut(S_3)$ isomorphic?
- 9. Let G be a group with normal subgroups H and K. Assume $K \subseteq H$. Then $H/K \leq G/K$. Prove that H/K is a normal subgroup of G/K and that $\frac{G/K}{H/K} \approx G/H$. (*Hint:* Define a homomorphism $G/K \to G/H$ whose kernel is H/K, and use the first isomorphism theorem.) To what familiar group is $\frac{\mathbf{Z}/60\mathbf{Z}}{\langle \overline{15} \rangle}$ isomorphic?
- 10. Show that \mathbf{Q}^+ , the group of rationals under addition, is not the direct product of two nontrivial groups.
- 11. Identify the quotient group H/Z(H), where H is the quaternion group and Z(H) its center.
- 12. Homomorphisms of cyclic groups
 - (a) Explicitly describe all homomorphisms from $\mathbf{Z}/n\mathbf{Z}$ to \mathbf{Z}^+ , where *n* is a positive integer.
 - (b) For which positive integers m and n is there a homomorphism $\mathbf{Z}/m\mathbf{Z} \to \mathbf{Z}/n\mathbf{Z}$ given by sending $1 + m\mathbf{Z}$ to $1 + n\mathbf{Z}$?