Math 6 – Modular Arithmetic (WS #1)

Let \mathbf{Z}_m be the set of integers taken "modulo m." Arithmetic in \mathbf{Z}_m is the same as normal integer arithmetic with the extra rule that m = 0. We have seen that \mathbf{Z}_m has exactly m elements, which we can write as $0, 1, 2, \ldots, m - 1$.

Getting practice with arithmetic

1. What are the answers to the following arithmetic problems in \mathbb{Z}_m ? Express your answer as one of $0, 1, 2, \ldots, m-1$.

$$1 + 1 =$$
 (in \mathbf{Z}_2), $113 + 189 =$ (in \mathbf{Z}_3), $-23 \cdot 19 =$ (in \mathbf{Z}_7)

- 2. (continued below) Compute the sequence $1 = 2^0, 2^1, 2^2, 2^3, 2^4, 2^5, \ldots$ modulo 15 until you notice a pattern. What is that pattern? Do the same for powers of 3.
- 3. We saw that 2x = 1 had the solution x = 6 in \mathbb{Z}_{11} . Without checking by hand all the other elements of \mathbb{Z}_{11} , can you show that x = 6 is the only solution to 2x = 1? [Hint: what happens if you multiply both sides of the \mathbb{Z}_{11} -equation 2x = 1 by 6.]

Homework

- 1. Which integers from 1 to 50 are the same as -3 in \mathbb{Z}_7 ?
- 2. Find the following elements in \mathbf{Z}_5 : $-1, \frac{1}{2}, \frac{1}{3}$ and the square roots of -1. Which of these can you find in \mathbf{Z}_6 ? in \mathbf{Z}_{10} ? in \mathbf{Z}_{11} ? in \mathbf{Z}_{13} ?
- 3. Pick ten positive integers m between 5 and 30. For each of these m, determine which of $0, 1, 2, \ldots, m-1$ are units modulo m, expressing your answers in a table like the following (which is an example for m = 12):

	0	1	2	3	4	5	6	7	8	9	10	11
unit in \mathbf{Z}_{12} ?		\checkmark				\checkmark		\checkmark				\checkmark

Formulate a guess as to when an element of \mathbf{Z}_m is a unit mod m. Be sure that your guess agrees with your data so far!

- 4. Let *a* be an element of \mathbf{Z}_{15} . (Thus *a* is one of 0, 1, 2, ..., 14.) For which of these *a* does the list $a, a^2, a^3, ...$ contain 1? (For example, you should have found when working out the 2nd practice problem above that the list contains 1 when a = 2 but not when a = 3.)
- 5. (Zero product property) A familiar fact from ordinary arithmetic is that whenever two integers multiply to be zero, one (or both) of them is zero. We say that the system of integers has the *zero product property*.

Here we investigate whether the zero product property holds for our new systems of arithmetic. Let m = 11. Is it true that if two numbers in \mathbb{Z}_{11} multiply to 0, then one of them has to be zero to start with?¹

What if we ask the same question for \mathbf{Z}_{10} ?

For every m from m = 2 to m = 20, determine whether or not \mathbf{Z}_m has the zero product property. On the basis of this data, formulate a guess as to exactly when \mathbf{Z}_m has the zero product property.

¹Example/explanation: $22 \cdot 3 = 66$, and 66 = 0 in \mathbf{Z}_{11} , so we have an example of two numbers multiplying to zero in \mathbf{Z}_{11} . But in this case one of the two numbers is 0, because 22 = 0 in \mathbf{Z}_{11} . So this example *does not* contradict the zero product property.