Math 6 - Modular Arithmetic (WS \#1)

Let \mathbf{Z}_{m} be the set of integers taken "modulo m." Arithmetic in \mathbf{Z}_{m} is the same as normal integer arithmetic with the extra rule that $m=0$. We have seen that \mathbf{Z}_{m} has exactly m elements, which we can write as $0,1,2, \ldots, m-1$.

Getting practice with arithmetic

1. What are the answers to the following arithmetic problems in \mathbf{Z}_{m} ? Express your answer as one of $0,1,2, \ldots, m-1$.

$$
1+1=\ldots \quad\left(\text { in } \mathbf{Z}_{2}\right), \quad 113+189=\ldots \quad\left(\text { in } \mathbf{Z}_{3}\right), \quad-23 \cdot 19=\ldots \quad\left(\text { in } \mathbf{Z}_{7}\right)
$$

2. (continued below) Compute the sequence $1=2^{0}, 2^{1}, 2^{2}, 2^{3}, 2^{4}, 2^{5}, \ldots$ modulo 15 until you notice a pattern. What is that pattern? Do the same for powers of 3 .
3. We saw that $2 x=1$ had the solution $x=6$ in \mathbf{Z}_{11}. Without checking by hand all the other elements of \mathbf{Z}_{11}, can you show that $x=6$ is the only solution to $2 x=1$? [Hint: what happens if you multiply both sides of the \mathbf{Z}_{11}-equation $2 x=1$ by 6 .]

Homework

1. Which integers from 1 to 50 are the same as -3 in \mathbf{Z}_{7} ?
2. Find the following elements in $\mathbf{Z}_{5}:-1, \frac{1}{2}, \frac{1}{3}$ and the square roots of -1 . Which of these can you find in \mathbf{Z}_{6} ? in \mathbf{Z}_{10} ? in \mathbf{Z}_{11} ? in \mathbf{Z}_{13} ?
3. Pick ten positive integers m between 5 and 30 . For each of these m, determine which of $0,1,2, \ldots, m-1$ are units modulo m, expressing your answers in a table like the following (which is an example for $m=12$):

	0	1	2	3	4	5	6	7	8	9	10	11
unit in $\mathbf{Z}_{12} ?$		\checkmark				\checkmark		\checkmark				\checkmark

Formulate a guess as to when an element of \mathbf{Z}_{m} is a unit $\bmod m$. Be sure that your guess agrees with your data so far!
4. Let a be an element of \mathbf{Z}_{15}. (Thus a is one of $0,1,2, \ldots, 14$.) For which of these a does the list a, a^{2}, a^{3}, \ldots contain 1? (For example, you should have found when working out the 2nd practice problem above that the list contains 1 when $a=2$ but not when $a=3$.)
5. (Zero product property) A familiar fact from ordinary arithmetic is that whenever two integers multiply to be zero, one (or both) of them is zero. We say that the system of integers has the zero product property.
Here we investigate whether the zero product property holds for our new systems of arithmetic. Let $m=11$. Is it true that if two numbers in \mathbf{Z}_{11} multiply to 0 , then one of them has to be zero to start with? ${ }^{1}$
What if we ask the same question for \mathbf{Z}_{10} ?
For every m from $m=2$ to $m=20$, determine whether or not \mathbf{Z}_{m} has the zero product property. On the basis of this data, formulate a guess as to exactly when \mathbf{Z}_{m} has the zero product property.

[^0]
[^0]: ${ }^{1}$ Example/explanation: $22 \cdot 3=66$, and $66=0$ in \mathbf{Z}_{11}, so we have an example of two numbers multiplying to zero in \mathbf{Z}_{11}. But in this case one of the two numbers is 0 , because $22=0$ in \mathbf{Z}_{11}. So this example does not contradict the zero product property.

