Mathematical logic, in the sense of this course, applies mathematical tools to model and study the activity of working mathematicians.

Working mathematicians prove theorems (among other things). We will study formal deductions in a formal language, which are proofs formulated in a precise framework, so precise that they can be studied mathematically: We can prove things about them. Our results about formal deductions can illuminate the proofs found in mathematicians' research papers and in mathematics students' homework papers.

We will begin the course with the study of the language of sentential logic, a formal language that is not powerful enough to model the language used by working mathematicians. Building on this, we will study the more powerful language of first order logic, and the notion of formal deduction in first order logic. We will prove Godel's Completeness Theorem, a major result, which states that this notion of formal deduction completely captures the power of mathematical proof in the following sense: Given any axiom system (for example, the axioms for a real vector space) and any statement in our language, either that statement can be proved from the axioms by means of a formal deduction, or else we cannot hope to prove the statement because there is a context (in our example, a real vector space) in which the axioms are true but the statement is false.

In this, the honors version of the course, we will also see the proof of Godel's Incompleteness Theorem. The Incompleteness Theorem is one of the most important mathematical results of the twentieth century, with important practical and philosophical consequences for mathematics.

An important philosophical consideration through our study will be the notion of "effective" or "algorithmic" process. For example, Godel's Incompleteness Theorem will tell us that there is no algorithm to list all the true statements about the natural numbers. In other words, it is impossible to program a computer to answer all possible questions (even in our restricted formal language) about the natural numbers.

Prerequisite for this course: Experience with mathematical structures and proofs, as offered by such courses as Mathematics 71, 54, or 24. If you are unsure about your preparation, please talk to Professor Groszek.

Math 69 satisfies the culminating experience requirement for mathematics majors.

Math 69 is appropriate for any graduate student who wants to take a course in logic.



Marcia Groszek
Last updated January 03, 2019