
Math 69
Mathematical Logic

Winter 2009

Final Paper Assignment

Due Dates

• Monday, February 23 - Final paper assigned.
• Friday, February 27 - Preliminary questions due in class.
• Tuesday, March 3 - X-hour on uncountably categorical theories.
• Wednesday, March 4 - Early Bird Special. First drafts returned now will be given

back Friday.
• Friday, March 6 - First draft due in class. Draft will be graded Credit/No Credit based

on completeness.
• Tuesday, March 10 - First drafts returned.
• Saturday, March 14 - Final Draft due at my office (Kemeny 212) or electronically (blitz

goehle) by 5pm.

Note: I will have office hours from 4pm-5pm, or by appointment (blitz goehle), in Kemeny
212 every weekday until the assignment is due.

Synopsis

Your goal for this assignment will be twofold. First, you will connect what you have
learned in this class with a topic outside of logic. This may include using first order logic to
prove something in a different field, going the other direction and using outside mathematics
to prove a fact about logic, or both. Second, you will write a formal, properly referenced,
mathematical paper.

In regards to the first part of the assignment, there are five different topics included in this
packet. You will choose one to write your paper on. Each topic includes a series of questions
that you will need to answer in your writeup. You should read each of the problems carefully
and choose the one that interests you the most. Next, write up solutions to the “preliminary”
questions and turn them in by Friday, February 27. These questions are meant to give you an
indication of what will be involved in completing the assignment proper. If the preliminary
questions seem terribly difficult you might consider choosing a different topic. Next you
should write up proofs for the main portion of the assignment. These proofs are going to
form the bulk of your paper. I will be available during office hours or by appointment if you
need help solving your chosen problem. You should definitely start working on your paper
before your preliminary questions are graded and returned.

The style of this paper should be similar to the style of an expository article in a mathe-
matics journal, which is not the same as either an essay for an English class or a homework
paper for a math class. If you look on the course web site, on the “General Information”
page, under “Exams,” you will find a number of resources which you may find helpful. To



get an idea of what a mathematics paper looks like you could also go to the Cook Math
Collection on the third floor of Berry Library and peruse some of the articles in Mathematics
Magazine. The basic idea is that your paper will include all of the usual components of
an essay incorporated with mathematical proofs written in an expository format using full
sentences. Another important facet is that the paper must be properly referenced, some-
thing which is discussed below. Your first draft will be due next Friday, March 6. Both
Professor Groszek and I will proofread your writeup and have it back to you by Tuesday,
March 10. This draft will be graded credit/no credit by completeness. We will comment on,
but not grade based on, the correctness of your proofs or your grammar, and will give you
full credit as long as you have included references and all of the questions in the assignment
are answered in some form. In other words it needs to be a “true” first draft. The final draft
will be graded based on the quality of your proofs and your writing and is due by 5pm on
Saturday, March 14. It should be turned in electronically (blitz goehle) or at my office in
Kemeny 212.

Honor Code and Citing Sources

There are some parts of this assignment that you may discuss with other students or
with me; the problems detail which portions those are. However, if you do so, you must
acknowledge any help you get. Your acknowledgment should appear in your paper as a
citation and on your References page as a source. It should not appear as an attached note
addressed to me. If you are not sure about how to cite sources or list them on your References
page, you can consult the booklet Sources, which is available online, from RWIT (in Berry
Library), or Professor Groszek.

Do not forget that whenever you use another person’s words you must indicate that you are
using a direct quotation. This applies to formulas as well. Generally we do not put quotation
marks around formulas, whatever their source. Often we display formulas as we would a
lengthy quotation, but we do that with our own formulas as well as others’. Therefore,
it is important to state clearly that you have taken a specific formula from a particular
book, article or other source (See the Compactness Theorem example below.) Well-known
facts that were known to you before you started writing this paper (this includes pretty
much everything we’ve learned about first-order logic) generally do not have to be cited,
but specific ways of phrasing them do, and whenever possible you should give credit to the
people who proved theorems. For example, the Completeness Theorem and the Compactness
Theorem are well-known. Your paper could say, without further attribution:

Theorem 1 (Gödel’s Completeness Theorem). Every consistent set of formulas is satisfiable.

However, if you need to look up the statement of the Compactness Theorem in Enderton, or
if you use Enderton’s way of phrasing the Compactness Theorem, you should give appropriate
credit:

Theorem 2. Two equivalent versions of the Compactness Theorem, as stated in Enderton’s
textbook [1, p. 144], are:

1. If Γ |= φ, then for some finite Γ0 ⊆ Γ we have Γ0 |= φ.
2. If every finite subset Γ0 of Γ is satisfiable, then Γ is satisfiable.



Other main theorems in Enderton can similarly be treated as common knowledge, but the
names Enderton uses for theorems are sometimes specific to the textbook. The Completeness
Theorem, the Compactness Theorem, and the theorems named after individuals generally go
by those names. However, if you have occasion to refer to the “Enumeration Theorem,” for
example, you should not only cite Enderton but also tell the reader what the Enumeration
Theorem says. Similarly, Enderton’s notation is not necessarily standard. if you are making
significant use of that notation it would be appropriate to, at the very least, give a reference
for your notation so your reader knows where to go to figure out what you’re saying. (I say
“at the very least” because you could also explain the notation in your paper. You can also
use English words in place of formal notation, and you should do so whenever the English
is clearer.)

All of these considerations apply to any results you use from outside of class. For example,
the fact that any two vector spaces with bases of the same cardinality are isomorphic can be
used without reference. However, if you actually look up and use a theorem in one of your
textbooks you should reference it. If you are in doubt, please ask; I will have office hours
regularly throughout the duration of this assignment. And remember, it is better to include
an unnecessary citation than to leave out a required one. Finally, first drafts of papers, even
though they are drafts, are being submitted as your work and should include all appropriate
citations and a References page.

Formatting, Etc.

Your paper should be typed on one side of the paper, double-spaced, with reasonable
margins, and with your name and the page number on every page. Don’t use too small
a font, please (12 point is okay). While it is acceptable to write in formulas and special
symbols by hand, using an equation editor is preferable. In any case, make sure any hand-
written additions are legible. The adventurous may wish to experiment with using LATEX.
Pronounced la-tek, LATEX is a typesetting program used to write up the vast majority of
modern mathematics. Once again, I will be available during office hours and by appointment
for the duration of the assignment.





Problem 1. Vector Spaces over the Rationals

The goal for this problem is to describe a language and a set of axioms for vector spaces
over the rationals, to explore what kind of statements we can make about rational vector
spaces using first order logic, and to investigate the completeness of our theory. The reason
we are using vector spaces over Q is that this will allow us to use a countable language.
The prerequisite for this problem is an understanding of basic axiomatic vector space theory.
Before you begin to work on the assignment proper you should write up answers to the
following preliminary questions.

Preliminary questions

1. Define a language L for vector spaces over the rational numbers. You should imple-
ment scalar multiplication by including a one place function symbol for each rational
number.

2. Describe a set Σ of sentences of L such that any structure which satisfies Σ is a vector
space over the rationals. Hint: Σ will be infinite; be aware that you cannot quantify
over the rational numbers.

3. Let A be the vector space Q2 with the usual vector addition and scalar multiplication.
Recall that automorphisms of A (in our sense) are just vector space automorphisms
and that any such function can be produced by mapping one basis of A onto a different
basis of A. What elements of Q2 are definable in L? What subsets of Q2 are definable?
Hint: Suppose v and w are two different vectors in A; when is there an automorphism
taking v to w?



Assignment

Your paper should do (at least) the following six things. It is all right to discuss the first
four items with other students or with me if you have trouble with them, remembering to
acknowledge any help you get. Items 5 and beyond you should not discuss with anyone else.

1. Describe a language L for vector spaces over Q and give a set of sentences Σ such that
a structure A for L is a vector space over Q if and only if A is a model of Σ.

2. Show that for every n there is a set of formulas Γn such that a model A of Σ has
dimension greater than or equal to n if and only if there is a variable assignment s for
A such that A with s satisfies Γn. Show that there is a set of formulas Γ∞ such that a
model A of Σ has infinite dimension if and only if there is a variable assignment s for
A such that A with s satisfies Γ∞

3. Show that Cn Σ is not a complete theory; give a sentence σ and show that Σ 6⊢ σ and
Σ 6⊢ ¬σ. (Hint: The zero-dimensional vector space has special properties.)

4. Show that Σ ∪ {σ} and Σ ∪ {¬σ} both give us complete theories. Hint: Show that if
A is a model for Σ with non-zero dimension then Th A∪Γ∞ is satisfiable. Then show
that any two countable vector spaces over Q with infinite dimension are isomorphic.
Alternatively, you could show that the theory of non-zero vector spaces over Q is
categorical in the cardinality of the reals.

5. What would have happened if you picked a different sentence τ such that Σ 6⊢ τ and
Σ 6⊢ ¬τ in part 3? Would you have gotten different theories in part 4? How many
theories extending Cn Σ are there?

6. Discuss the consequences of these results. Is there an effective procedure for determin-
ing whether a sentence of L is a consequence of Σ? Are there sentences of L whose
truth or falsity in a vector space can be used to determine something about the di-
mension of that vector space? Are there other important conclusions you can come
to?

7. Optional: what happens if, instead of rational vector spaces, we consider vector spaces
over a finite field F? You can consider finite fields in general or pick a specific one.



Problem 2. Abelian Groups

The goal for this problem is to describe a language and a set of axioms for abelian groups,
and to explore what the theory of abelian groups can tell us about completeness. Prerequisite
for this problem is an understanding of axiomatic group theory and axiomatic vector space
theory. Before you begin work on the assignment proper you should write up answers to the
following preliminary questions.

For this problem we will use the following definitions. An element g of a group G has
order n if

ng = g + · · · + g
︸ ︷︷ ︸

= 0.

n times

For example, g has order 2 if g + g = 0. An element is said to be torsion free if it does not
have order n for any n ∈ N with n > 0. A group is said to be torsion free if each of its
elements, besides the identity, are torsion free. Lastly, we say that a group G is divisible if
for each g ∈ G and n ∈ N with n > 0 there exists h ∈ G such that

nh =h+ · · · + h
︸ ︷︷ ︸

= g.

n times

Preliminary Questions

1. Define a language L and a set of axioms Σ such that any model which satisfies Σ is an
abelian group. Next, define a set of axioms T so that any model which satisfies Σ∪ T
is a divisible torsion free abelian group.

2. Show that any divisible torsion free abelian group has a Q-vector space structure.
Hint: Show that if G is such a group, n ∈ N with n > 0 and g ∈ G then there is a
unique h ∈ G such that nh = g.

3. Define a set of set of axioms S such that any model which satisfies Σ∪S is an abelian
group such that each element besides the identity has order two. Can we give a model
for Σ∪S a vector space structure? Hint: Be creative in your choice of the scalar field.



Assignment

Your paper should do (at least) the following four things. It is all right to discuss the first
three items with other students or with me if you have trouble with them, remembering to
acknowledge any help you get. Items 4 and beyond you should not discuss with anyone else.

1. Define a language L for groups and give a set of sentences Σ such that a structure A

for L is an abelian group if and only if it is a model of Σ.
2. Define a set of sentences T such that a structure A for L is a model for Σ ∪ T if and

only if it is a divisible torsion free abelian group. Show that Σ ∪ T is categorical in
the cardinality of the reals but not countably categorical. Hint: You will need to view
a divisible torsion free abelian group as a vector space over the rationals.

3. Define a set of sentences S such that a structure A for L is a model for Σ ∪ S if and
only if A is an abelian group where every element besides the identity has order 2.
Show that A is countably categorical.

4. Discuss the consequences of these results. Is Cn Σ complete? Is Cn Σ ∪ T complete?
Is it decidable? Is Cn Σ ∪ S complete? If not, then can you find a set of sentences R
such that Σ ∪ S ∪ R has a complete theory with the same infinite models as Σ ∪ S?
What other important conclusions can you come to?

5. Optional: Show that any torsion free abelian group can be ordered so that

a < b ∧ c ≤ d→ a+ c < b+ d.



Problem 3. Random Graphs

The goal for this problem is to use the mechanics of first order set theory to explore the
theory of random finite graphs and prove that the “almost sure” theory of graphs is complete
and decidable. A knowledge of graphs is not necessary to solve this problem but may help to
motivate some of the questions. A basic knowledge of probability, however, is a prerequisite.
Before you begin work on the assignment you should write up the answers to the following
preliminary questions.

For this problem we will define a graph to be a set G of vertices along with a relation R
on G which tells us if there is an edge between two vertices. We require that the edges be
“undirected” and that no vertex has an edge back onto itself. In the interests of being a
specific as possible, let L contain a single binary relation symbol R. Our graph axioms are
then given by ∀x ¬Rxx and ∀x∀y Rxy → Ryx. Any structure for L satisfying these axioms
is a graph. Next, for each n ∈ N with n > 0, let φn be the “extension axiom”

φn := ∀x1 . . . ∀xn∀yy . . . ∀yn

(
n∧

i=1

n∧

j=1

xi 6= yj → ∃z
n∧

i=1

(z 6= xi ∧ z 6= yi ∧Rxiz ∧ ¬Ryiz)

)

.

Lastly, we define Σ to be the set

Σ := {∀x ¬Rxx, ∀x∀y Rxy → Ryx, ∃x∃y x 6= y} ∪ {φn : n = 1, 2, 3, . . .}.

Preliminary Questions

1. Show that a model of Σ is a graph where for any finite disjoint sets of vertices X and
Y we can find a vertex not contained in X or Y with edges going to every vertex in
X and no vertex in Y .

2. Show that there is a countable model of Σ. Hint: First show that given any countable
graph G there is a graph G such that G is countable, G contains G as a subgraph,
and if X and Y are disjoint finite subsets of G then there is a z ∈ G \ G such that
Rxz for all x ∈ X and ¬Ryz for all y ∈ Y .

3. Suppose we construct a graph with vertices {1, 2, . . . , N} by independently deciding
whether there is an edge between i and j for i 6= j with probability 1/2. Let GN be
the set of all graphs with vertices {1, 2, . . . , N}. What is the probability that we have
constructed any particular element of GN .



Assignment

Your paper should do (at least) the following five things. It is all right to discuss the first
three items with other students or with me if you have trouble with them, remembering to
acknowledge any help you get. Items 4 and beyond you should not discuss with anyone else.

1. Show that a model for Σ is a graph where for any finite disjoint sets X and Y we
can find a vertex not contained in X or Y with edges going to every vertex in X
and no vertex in Y . Show that Σ is satisfiable and countably categorical. Is Cn Σ
complete and decidable? Hint: You already showed that Σ is satisfiable. Use an
argument similar to the proof that countable dense linear orderings without endpoints
are countably categorical to show that Σ is countably categorical. In particular, given
two models, list the elements out and build your isomorphism one element at a time.

2. Let GN be the set of all graphs with vertices {1, 2, . . . N}. Consider a probability
distribution on GN which makes all graphs equally likely. For any sentence ψ

pN(ψ) :=
|{G ∈ GN : G |= ψ}|

|GN |

is the probability that a random element of GN satisfies ψ. Show that

lim
N→∞

pN(φn) = 1 for n = 1, 2, . . .

Hint: This argument mostly relies on probability theory. You may find it easier to
show that limN→∞ pN(¬φn) = 0.

3. For any sentence ψ, show that either limN→∞ pN(ψ) = 1 or limN→∞ pN(ψ) = 0.
4. We call T = {ψ : limN→∞ pN(ψ) = 1} the almost sure theory of graphs. Show that Σ

axiomatizes the almost sure theory of graphs.
5. Discuss the consequences of these results. Is T complete? Decidable? How do you

interpret the fact that, for each ψ, limN→∞ pN(ψ) is either zero or one as a statement
about graph theory? What other important conclusions can you come to?



Problem 4. Dense Linear Orderings

This goal for this problem is to use the theory of dense linear orderings to prove interesting
facts about first order logic. In order to solve this problem you need to be comfortable with
the reals, the rationals, and the concept of a least upper bound. Before you begin work on
the assignment you should write up the answers to the following preliminary questions.

Preliminary Questions

1. Write down a language L and a set of axioms Σ for dense linear orderings without
endpoints. Professor Groszek showed in class that Σ is countably categorical. Write
down an outline of that proof.

2. A set D in a model A for Σ is dense if for all x, y there exists z ∈ D such that
x < z < y. A set is codense if its complement is dense. Give an example of a dense,
codense set in Q. Suppose we add the unary predicate P to L. Write down a sentence
which will guarantee that P is given by a dense codense set.

3. Prove the following two general results about first order logic.
(i) For any language L, two L-structures A and B are elementarily equivalent if

and only if they are elementarily equivalent for every finite sublanguage.
(ii) If L is countable, T is an L-theory with no finite models, and any two countable

models of T are elementarily equivalent, then T is complete.



Assignment

Your paper should do (at least) the following four things. It is all right to discuss the first
three items with other students or with me if you have trouble with them, remembering to
acknowledge any help you get. Item 4 and beyond you should not discuss with anyone else.

1. Write down a language L and give a set of axioms Σ such that a structure for L is a
model for Σ if and only if it is a dense linear ordering without endpoints.

2. Let L3 be L with the added constants symbols c0, c1, . . .. Let Σ3 be Σ with sentences
asserting c0 < c1 < . . .. Show that Σ3 has exactly three countable models up to
isomorphism. Hint: Consider the questions: Does c0, c1, c2, . . . have an upper bound?
a least upper bound?

3. Let L4 be L3 with the unary predicate P . Define a sentence σ which guarantees that
for any model A of Σ we have A |= σ if and only if PA is a dense codense subset of A.
Let

Σ4 = Σ3 ∪ {σ} ∪ {¬Pci}
∞

i=0
.

Show that Σ4 has exactly four countable models up to isomorphism.
4. Discuss the consequences of these results. Are Cn Σ3 and Cn Σ4 complete? Are they

decidable? Can you generalize this construction to give examples of complete theories
which have exactly n countable models for n = 5, 6, . . .? What other important
conclusions can you come to?

5. Optional: show that Σ is not categorical in the cardinality of the reals.



Problem 5. Game Theory

The goal for this problem is to use techniques from game theory to prove facts about
models in first order logic. We will use Ehrenfeucht-Fräıssé games to prove that the theory
of discrete liner orderings without top or bottom is complete. A prerequisite for this problem
is a rather basic knowledge of game theory. Before you begin work on the assignment you
should write up the answers to the following preliminary questions.

We use the following two definitions in this problem. First, suppose we have a game G
with two players named Alice and Bob respectively. A strategy for Bob is a function τ such
that if Alice’s first n moves are c1, . . . , cn then Bob’s nth move will be τ(c1, . . . , cn). We say
that Bob uses the strategy τ if the play of the game looks like:

Alice c1; Bob τ(c1); Alice c2; Bob τ(c1, c2); . . .

We say that τ is a winning strategy for Bob if for any sequence of plays c1, c2, . . . that Alice
makes, Bob will win by following τ . We define winning strategies for Alice analogously.
Next, let L be a language with no function symbols. Suppose we have two structures A and
B for L with |A| ∩ |B| = ∅. If A ⊂ |A| and B ⊂ |B| and f : A → B we say that f is a
partial embedding if the function

f ∪ {(cA, cB) : c is a constant in L}

is a bijection preserving all relations on L. We will define an infinite two-player game
Gω(A,B) between two players called Alice and Bob. A play of the game will consist of a
(countably) infinite number of stages. Together they will build a partial embedding f from
A to B. At the ith stage, Alice moves first and either plays ai ∈ |A|, challenging Bob to
put ai into the domain of f , or bi ∈ |B|, challenging Bob to put bi into the range of f .
If Alice plays ai then Bob must play bi ∈ |B|, whereas if Alice plays bi then Bob must
play ai ∈ |A|. Bob wins the game if f = {(ai, bi) : i = 1, 2, . . .} is the graph of a partial
embedding. Finally, we say that a linear order is discrete if each element has an immediate
successor and predecessor.

Preliminary Questions

1. Prove that if A and B are countable L structures then Bob has a winning strategy in
Gω(A,B) if and only if A is isomorphic to B.

2. Reconstruct Professor Groszek’s proof that any two countable dense linear orderings
without endpoints are isomorphic in terms of the game Gω(A,B).

3. Define a language L and a set of axioms Σ for the theory of discrete linear orders
without endpoints. Show that every model of Σ is of the form (L×Z, <) where L is a
linear order and < is the lexicographic order. Also show that every order of this form
is a model of Σ. Hint: consider the equivalence relation a ∼= b if and only if a is the
nth successor or predecessor of b for some n ∈ N.



Assignment

Your paper should do (at least) the following five things. It is all right to discuss the first
four items with other students or with me if you have trouble with them, remembering to
acknowledge any help you get. Item 5 you should not discuss with anyone else.

1. Let L be the language with the two place predicate <. Define a set of axioms Γ such
that A is a model for Γ if and only if A is a dense linear order without endpoints.
Define a set of axioms Σ such that A is a model for Σ if and only if A is a discrete
linear order without endpoints.

2. Prove that if A and B are countable structures for L then Bob has a winning strategy
in Gω(A,B) if and only if A is isomorphic to B. Use this theorem to prove that any
two countable dense linear orderings without endpoints are isomorphic.

For each n = 1, 2, . . . we define a two player game Gn(A,B) between Alice and Bob. The
game will have n rounds. On the ith round Alice plays first and either plays ai ∈ |A| or bi ∈
|B|. On Bob’s turn, if Alice played ai then Bob plays bi ∈ B and if Alice played bi then Bob
plays ai ∈ |A|. The game stops after the nth round and Bob wins if {(ai, bi) : i = 1, . . . , n} is
the graph of a partial embedding from A into B. We call Gn(A,B) an Ehrenfeucht-Fräıssé
game. You may use the following theorem without proof.

Theorem. Let L be a finite language without functions symbols and let A and
B be L structures. Then A is elementarily equivalent to B if and only if Bob
has a wining strategy in Gn(A,B) for all n.

3. Show that every model of Σ is of the form (L×Z, <) where L is a linear order and <
is the lexicographic order.

4. Using the above theorem, show that any model (L×Z, <) of Σ is elementary equivalent
to (Z, <). Hint: If x = (a, i), y = (b, j) ∈ L×Z we can define a distance function d by
d(x, y) = |i− j| if a = b and d(x, y) = ∞ if a 6= b. The problem for Bob is that Alice
can play elements that are infinitely far apart in L×Z and force Bob to play elements
that are finitely far apart in Z. However, since Bob knows how long the game will last
he can play elements sufficiently far apart to avoid conflicts.

5. Discuss the consequences of these results. Is Cn Σ complete? Decidable? Is Σ count-
ably categorical? What other important conclusions can you come to?


