Math 69
Winter 2009
Wednesday, January 7
Truth Assignments and Tautological Implication

If v is a truth assignment on the set of sentence symbols (v is a function that assigns each sentence symbol to T or F), we extend v to a truth assignment \bar{v} on all formulas by recursion on formulas:

$$
\begin{gathered}
\bar{v}\left(A_{n}\right)=v\left(A_{n}\right) \\
\bar{v}((\neg \alpha))= \begin{cases}T & \bar{v}(\alpha)=F \\
F & \text { otherwise } .\end{cases} \\
\bar{v}((\alpha \wedge \beta))= \begin{cases}T & \bar{v}(\alpha)=\bar{v}(\beta)=T \\
F & \text { otherwise. }\end{cases} \\
\bar{v}((\alpha \vee \beta))= \begin{cases}F & \bar{v}(\alpha)=\bar{v}(\beta)=F \\
T & \text { otherwise. }\end{cases} \\
\bar{v}((\alpha \rightarrow \beta))= \begin{cases}F & \bar{v}(\alpha)=T \& \bar{v}(\beta)=F \\
T & \text { otherwise. }\end{cases} \\
\bar{v}((\alpha \leftrightarrow \beta))= \begin{cases}T & \bar{v}(\alpha)=\bar{v}(\beta) \\
F & \text { otherwise } .\end{cases}
\end{gathered}
$$

Another way to phrase this is using Boolean functions as discussed in Monday's handout. That is, we can define

$$
\begin{aligned}
\operatorname{Val}_{\neg}(X) & = \begin{cases}T & X=F \\
F & X=T\end{cases} \\
\operatorname{Val}_{\wedge}(X, Y) & = \begin{cases}T & X=Y=T \\
F & \text { otherwise } .\end{cases} \\
\operatorname{Val}_{\vee}(X, Y) & = \begin{cases}F & X=Y=F \\
T & \text { otherwise } .\end{cases}
\end{aligned}
$$

$$
\begin{gathered}
\operatorname{Val}_{\rightarrow}(X, Y)= \begin{cases}F & X=T \& Y=F \\
T & \text { otherwise }\end{cases} \\
\operatorname{Val}_{\leftrightarrow}(X, Y)= \begin{cases}T & X=Y \\
F & \text { otherwise }\end{cases}
\end{gathered}
$$

Then we can define \bar{v} by

$$
\begin{gathered}
\bar{v}\left(A_{n}\right)=v\left(A_{n}\right) \\
\bar{v}((\neg \alpha))=\operatorname{Val}_{\neg}(\bar{v}(\alpha)),
\end{gathered}
$$

and for any binary connective *,

$$
\bar{v}((\alpha * \beta))=\operatorname{Val}_{*}(\bar{v}(\alpha), \bar{v}(\beta))
$$

This notation might simplify the following task.
Prove this Propositon: For every two truth assignments v and w that agree with each other on every sentence symbol that occurs in α, we have $\bar{v}(\alpha)=\bar{w}(\alpha)$.

Show that the following are tautologically equivalent:

$$
\begin{gathered}
\left(\alpha_{1} \wedge \alpha_{2} \wedge \cdots \wedge \alpha_{n}\right) \rightarrow \beta \\
\alpha_{n} \rightarrow\left(\alpha_{n-1} \rightarrow\left(\cdots\left(\alpha_{1} \rightarrow \beta\right) \cdots\right)\right)
\end{gathered}
$$

(Of course, neither of the above is actually a formula. We will eliminate parentheses when that can be done unambiguously; the textbook gives rules for eliminating parentheses at the end of section 1.3. Officially, the first formula given above is an abbreviation for the actual wff

$$
\left(\left(\alpha_{1} \wedge\left(\alpha_{2} \wedge\left(\cdots \wedge \alpha_{n}\right) \cdots\right)\right) \rightarrow \beta\right)
$$

You should avoid like the plague omitting parentheses in formulas involving \rightarrow and \leftrightarrow. Officially, for example, $A \leftrightarrow B \leftrightarrow C$ is an abbreviation for $(A \leftrightarrow(B \leftrightarrow C))$, and does NOT mean that A, B, and C have the same truth value. The textbook may abbreviate the second formula above as

$$
\left.\alpha_{n} \rightarrow \alpha_{n-1} \rightarrow \cdots \rightarrow \alpha_{1} \rightarrow \beta .\right)
$$

Show the following:
$\Sigma \models \alpha$ if and only if $\Sigma \cup\{\neg \alpha\}$ is not satisfiable.

If Σ is satisfiable, then at least one of $\Sigma \cup\{\alpha\}$ and $\Sigma \cup\{\neg \alpha\}$ is satisfiable.

A set of formulas Σ is said to be finitely satisfiable if every finite subset of Σ is satisfiable. We are about to prove the Compactness Theorem: If Σ is finitely satisfiable, then Σ is satisfiable. Prove the following proposition, which we will use as a lemma:

Proposition: If Σ is finitely satisfiable, then at least one of $\Sigma \cup\{\alpha\}$ and $\Sigma \cup\{\neg \alpha\}$ is finitely satisfiable.

Here is an outline of the proof of the Compactness Theorem:
Suppose that Σ is finitely satisfiable. Define, by induction on n,

$$
\begin{gathered}
\Sigma_{0}=\Sigma \\
\Sigma_{n+1}= \begin{cases}\Sigma_{n} \cup\left\{A_{n}\right\} & \text { if this is finitely satisfiable; } \\
\Sigma_{n} \cup\left\{\neg A_{n}\right\} & \text { otherwise. }\end{cases}
\end{gathered}
$$

Show that each Σ_{n} is finitely satisfiable.

Now let $\Sigma^{*}=\bigcup_{n=0}^{\infty} \Sigma_{n}$. Show that Σ^{*} is finitely satisfiable.

Note that $\Sigma \subseteq \Sigma^{*}$, and that for each n, either A_{n} or $\neg A_{n}$ is in Σ^{*} (but not both). Define a truth valuation v by

$$
v\left(A_{n}\right)= \begin{cases}T & A_{n} \in \Sigma^{*} \\ F & \neg A_{n} \in \Sigma^{*}\end{cases}
$$

Show that v satisfies Σ^{*}, and therefore Σ, as follows:
Suppose not. Let $\alpha \in \Sigma^{*}$ with $\bar{v}(\alpha)=F$. For each sentence symbol A_{n}, define

$$
\beta_{n}= \begin{cases}A_{n} & A_{n} \in \Sigma^{*} \\ \neg A_{n} & \neg A_{n} \in \Sigma^{*}\end{cases}
$$

Let Γ be a finite subset of Σ^{*} containing α and β_{n} for every sentence symbol A_{n} that occurs in α. Because Σ^{*} is finitely satisfiable, there is a truth assignment w satisfying Γ. Deduce a contradiction.

