1. Chapter I: \#10ab.

ANS: This is a test to see if you can parse a definition precisely. Recall that a function $f: A \rightarrow B$ is a subset $f \subset A \times B$ such that for every $a \in A$, there is a unique $b \in B$ such that $(a, b) \in f$. If either A or B is empty, then so is $A \times B$. Hence there is only one subset of $A \times B$ - namely the empty set \emptyset. The only question is whether or not the empty set is a function.
(a) If A is nonempty and $B=\emptyset$, then given $a \in A$, there can be no $(a, b) \in A \times B=\emptyset$, so there are no functions $f: A \rightarrow \emptyset$.
(b) On the other hand, if $A=\emptyset$, then whether or not B is empty, the condition for all $a \in A$ there is a unique $b \in B$ such that $(a, b) \in \emptyset$ is vacuously satisfied. Hence the empty set is a function, and the only function, from \emptyset to B.

2. Chapter II: \#11.

ANS: Here we have to show that if $a>1$, then $\left\{a, a^{2}, a^{3}, \ldots\right\}$ is not bounded. Ok, suppose not. Then there is $x \in \mathbf{R}$ such that $a^{n} \leq x$ for all $n \in \mathbf{N}$.

Next we turn to the hint. We'll show that

$$
\left(1+\frac{1}{n}\right)^{n} \geq 2 \text { for all } n \in \mathbf{N}
$$

using induction. ${ }^{1}$ Let A be the subset of \mathbf{N} for which (\dagger) holds. Clearly $1 \in A$ and if $n \in A$, then

$$
\begin{aligned}
\left(1+\frac{1}{n}\right)^{n+1} & =\left(1+\frac{1}{n}\right)^{n}\left(1+\frac{1}{n}\right) \\
& \geq 2 \cdot 1=2 .
\end{aligned}
$$

(Here we've used $n \in A$ and $\left(1+\frac{1}{n}\right) \geq 1$.) This shows (\dagger) holds for all n.
Next I claim that

$$
2^{k} \geq k \quad \text { for all } k \in \mathbf{N}
$$

Again, we'll use induction. Let A be the set of k for which (\ddagger) holds. Clearly $1 \in A$. Suppose $n \in A$. Then

$$
2^{n+1} \geq 2^{n}(2) \geq 2 n=n+n \geq n+1 .
$$

Thus (\ddagger) holds for all k. But there is a $k>x$ (by LUB 1). Since $a-1>0$, there is a $n \in \mathbf{N}$ such that $\frac{1}{n}<a-1$ and

$$
a<\left(1+\frac{1}{n}\right) .
$$

[^0]But then

$$
\begin{aligned}
a^{k n} & >\left(\left(1+\frac{1}{n}\right)^{n}\right)^{k} \\
& \geq 2^{k} \\
& \geq k \\
& >x
\end{aligned}
$$

But this contradicts our choice of x. This finishes the proof.
3. Chapter II: \#13.

ANS: Since each S_{i} is nonempty and bounded above, each set has a least upper bound s_{i}. Define

$$
S_{1}+S_{2}=\left\{x+y: x \in S_{1} \text { and } y \in S_{2}\right\} .
$$

We are supposed to show that $\operatorname{lub}\left(S_{1}+S_{2}\right)=s_{1}+s_{2}$. But if $x \in S_{1}$ and $y \in S_{2}$, then

$$
x+y \leq s_{1}+s_{2}
$$

Hence $S_{1}+S_{2}$ is bounded above (as well as nonempty). Hence $S_{1}+S_{2}$ at least has an least upper bound. Since $s_{1}+s_{2}$ is an upper bound, it will suffice to see that $s_{1}+s_{2}-\epsilon$ is not an upper bound for any $\epsilon>0$. But $s_{1}-\epsilon / 2$ can't be an upper bound for S_{1}. Thus there is a $t_{1} \in S_{1}$ such that $t_{1}>s_{1}-\epsilon / 2$. Similarly, there is a $t_{2} \in S_{2}$ such that $t_{2}>s_{2}-\epsilon / 2$. But now we have $t_{1}+t_{2} \in S_{1}+S_{2}$ and

$$
t_{1}+t_{2}>s_{1}+s_{2}-\epsilon
$$

Thus $s_{1}+s_{2}-\epsilon$ is not an upper bound and we're done.

[^0]: ${ }^{1}$ Alternately, you could use the result we proved in lecture that $(1+x)^{n} \leq 1+n x$ provided $x \geq-1$. You can't for example, use the binomial theorem as we haven't proved it. Of course, you could prove it and then use it.

