
1. Chapter I: #10ab.

ANS: This is a test to see if you can parse a definition precisely. Recall that a function f : A → B
is a subset f ⊂ A × B such that for every a ∈ A, there is a unique b ∈ B such that (a, b) ∈ f . If
either A or B is empty, then so is A × B. Hence there is only one subset of A × B — namely the
empty set ∅. The only question is whether or not the empty set is a function.

(a) If A is nonempty and B = ∅, then given a ∈ A, there can be no (a, b) ∈ A × B = ∅, so there are no
functions f : A → ∅.

(b) On the other hand, if A = ∅, then whether or not B is empty, the condition for all a ∈ A there is a
unique b ∈ B such that (a, b) ∈ ∅ is vacuously satisfied. Hence the empty set is a function, and the
only function, from ∅ to B.

2. Chapter II: #11.

ANS: Here we have to show that if a > 1, then {a, a2, a3, . . . } is not bounded. Ok, suppose not.
Then there is x ∈ R such that an ≤ x for all n ∈ N.

Next we turn to the hint. We’ll show that

(

1 +
1

n

)n

≥ 2 for all n ∈ N (†)

using induction.1 Let A be the subset of N for which (†) holds. Clearly 1 ∈ A and if n ∈ A, then

(

1 +
1

n

)n+1

=
(

1 +
1

n

)n(

1 +
1

n

)

≥ 2 · 1 = 2.

(Here we’ve used n ∈ A and (1 + 1

n
) ≥ 1.) This shows (†) holds for all n.

Next I claim that
2k ≥ k for all k ∈ N. (‡)

Again, we’ll use induction. Let A be the set of k for which (‡) holds. Clearly 1 ∈ A. Suppose n ∈ A.
Then

2n+1 ≥ 2n(2) ≥ 2n = n+ n ≥ n+ 1.

Thus (‡) holds for all k. But there is a k > x (by LUB 1). Since a − 1 > 0, there is a n ∈ N such
that 1

n
< a− 1 and

a <
(

1 +
1

n

)

.

1Alternately, you could use the result we proved in lecture that (1 + x)n ≤ 1+ nx provided x ≥ −1. You
can’t for example, use the binomial theorem as we haven’t proved it. Of course, you could prove it and then
use it.
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But then

akn >
((

1 +
1

n

)n)k

≥ 2k

≥ k

> x.

But this contradicts our choice of x. This finishes the proof.

3. Chapter II: #13.

ANS: Since each Si is nonempty and bounded above, each set has a least upper bound si. Define

S1 + S2 = {x+ y : x ∈ S1 and y ∈ S2 }.

We are supposed to show that lub(S1 + S2) = s1 + s2. But if x ∈ S1 and y ∈ S2, then

x+ y ≤ s1 + s2.

Hence S1 + S2 is bounded above (as well as nonempty). Hence S1 + S2 at least has an least upper
bound. Since s1 + s2 is an upper bound, it will suffice to see that s1 + s2 − ǫ is not an upper bound
for any ǫ > 0. But s1 − ǫ/2 can’t be an upper bound for S1. Thus there is a t1 ∈ S1 such that
t1 > s1− ǫ/2. Similarly, there is a t2 ∈ S2 such that t2 > s2− ǫ/2. But now we have t1+ t2 ∈ S1+S2

and
t1 + t2 > s1 + s2 − ǫ.

Thus s1 + s2 − ǫ is not an upper bound and we’re done.
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