
Math 56: MATLAB vs python code example

Alex Barnett, May 3, 2013

MATLAB and python are quite similar (both high-level interpreted languages that can be interactive,
or use script or function files). Going back and forth is like going from Spanish to Italian. Main differences:
MATLAB has trailing semicolons to prevent output, has end to close conditionals or loops; python uses
indentation (leading spaces) to indicate a conditional or looped block (no end), colon to start the block.
Array indexing is also different. To help you, here’s the same code in both. Please study them, and the
simple algorithm itself (a variant will come up on Tuesday 5/7/13).

MATLAB version

function printbinary(n)

% printbinary(n) prints integer n in binary

if n<0, error(’n cannot be negative’), end

if n==0, fprintf(’0\n’); return, end

% t is largest power of 2 not exceeding n

t = 2^floor(log(n)/log(2));

while t>=1

if n>=t, fprintf(’1’), n = n-t;

else, fprintf(’0’)

end

t = t/2;

end

fprintf(’\n’) % terminate the string

The above must be a file called printbinary.m.
Here’s its test script (a separate file, but you could
put it in the same file if you made it a function too):

% test the printbinary function

disp(’the following two should match’)

n = 153637;

printbinary(n)

dec2bin(n)

for n=0:10, printbinary(n); end % a loop

try, printbinary(-4) % should fail nicely

catch, ’n<0 error correctly detected’, end

Note the use of try and catch to test error reporting
without halting the program.
Can you spot a place in the code for improvement
in reliability at large n ?

python version

from math import * # needed for logarithm

def printbinary(n):

"""printbinary(n), print integer in binary

"""

if n<0:

print ’n cannot be negative’; return

if n==0:

print ’0’; return

t is largest power of 2 not exceeding n

t = 2**floor(log(n)/log(2))

s = ’’ # output string

while t>=1:

if n>=t: s = s+’1’; n = n-t # appends

else: s = s+’0’

t = t/2

print s

main script, run if imported/reloaded, etc

print ’the following two should match’

n = 153637; printbinary(n); print bin(n)

for n in range(11): # loops from 0 to 11-1=10

printbinary(n)

printbinary(-4) # should fail gracefully

Say this file is named pb.py. You can run in two
ways: 1) from the UNIX/Mac terminal via python

pb.py, or 2) from the python interactive environ-
ment via execfile("pb.py"). The latter is clos-
est to running a Matlab script, since the variables
are still accessible, useful for debugging. You can
also 3) import pb which loads it as a module, then
run pb.printbinary(...). Modules are the way
to build bigger packages. For changes to take effect
you must reload(pb).
Notice use of a “docstring” for documentation; once
imported, typing help pb.printbinary shows it.

1

