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1 Riemann ζ function and its properties

1.1 Definition

The Riemann Zeta function ζ(s) is the analytic function defined by

ζ(s) =
∞∑
n=1

1

ns
=
∏
p∈P

1

1− 1
ps

(1)

for Re (s) > 1 and by analytic continuation for all s ∈ C, s 6= 1.

Figure 1.1: Riemann ζ function: {ζ(a+ bi) : −30 ≤ a, b ≤ 30}

The magnitude of the output is indicated by the brightness (with zero being black and infinity
being white), and the argument is represented by the hue (with red being positive real, and
increasing through orange, yellow, . . . as the argument increases).

Riemann himself, however, does not speak of the analytic continuation of ζ beyond the
halfplane Re (s) > 1, but instead defines ζ by the formula

ζ(s) =
Γ(1− s)

2πi

∮
γ

xs−1

e−x − 1
dx (2)

where Γ is an analytic extension of factorial function with simple poles at negative in-
tegers, and γ is a contour starting and ending at +∞ and wrapping around the origin once.
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1.2 Functional equation and the function ξ

The Riemann ζ function satifies the functional equation

ζ(s) = 2sπs−1 sin
(πs

2

)
Γ(1− s)ζ(1− s) (3)

Riemann defines a variant of ζ function:

ξ(s) =
1

2
s(s− 1)π−

s
2 Γ
(s

2

)
ζ(s) (4)

The function ξ is an entire function on the complex plane, and the functional equation
is equivalent to

ξ(s) = ξ(1− s) (5)

Figure 1.2: Riemann ξ function: {ξ(a+ bi) : −50 ≤ a, b ≤ 50}
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1.3 Riemann Hypothesis

The Riemann ζ function has two types of zeros: even negative integers – see the func-
tional equation (3) – usually refered to as the trivial zeros, and non-trivial complex zeros.
It is proved that any non-trivial zero lies in the open strip {s ∈ C : 0 < Re (s) < 1},
called the critical strip.

Riemann hypothesis: All the complex zeros of the function ζ lie in the line {s ∈
C : Re (s) = 1

2
}, called the critical line.

Figure 1.3: ζ
(
1
2

+ it
)
: [1] Re and Im , [2] norm and phase

Proposed by Riemann in 1859, Riemann hypothesis has remained unresolved and is con-
sidered by many mathematicians to be the most important problem in pure mathematics.
It is part of Hilbert’s eighth problem and also one of the Clay Mathematics Institute Mil-
lennium Problems. Since the very beginning of 20th century, many computational efforts
have taken place to support Riemann hypothesis. In the next sections, we will discuss
different computational methods and how they have been used to investigate Riemann ζ
function and its roots.
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2 Computational Methods

In this report, we focus on two schemes to evaluate ζ function: Euler-Maclaurin summa-
tion, which is used for general value s ∈ C, and Riemann Siegel formula, which is used
to approximate ζ more efficiently on the critical line.

2.1 Euler-Maclaurin Summation

Euler-Maclaurin summation is a powerful tool, which can be used to evaluate integrals
by finite sums, or conversely infinite series by integrals.

N∑
n=M

f(n) =

∫ N

M

f(x)dx−B1(f(N) + f(M)) +
∞∑
k=1

B2k

(2k)!
(f (2k−1)′(N)− f (2k−1)′(M))

where Bk is the k-th Bernouli number.

Directly applying Euler-Maclaurin summation to evaluate ζ(s) =
∑∞

n=1
1
ns yields large

remainders; however, the series
∑∞

n=N
1
ns can be approximated reasonably well by Euler-

Maclaurin summation. This scheme to evaluate ζ(s) as following:

∞∑
n=1

n−s =
N−1∑
n=1

n−s +
∞∑
n=N

n−s

=
N−1∑
n=1

n−s +
N1−s

s− 1
+
N−s

2
+

ν∑
k=1

B2k

(2k)!

(
2k−2∏
j=0

(s+ j)

)
N−s−2k+1 +RN,ν

where RN,ν is the error tern bounded by:

RN,ν ≤
∣∣∣∣ s+ 2ν + 1

Re (s) + 2ν + 1

∣∣∣∣
∣∣∣∣∣ B2ν+2

(2ν + 2)!

(
2ν∏
j=0

(s+ j)

)
N−s−2ν−1

∣∣∣∣∣ (6)

It follows from (6) that to obtain a given precision, N has to be of order O(|s|).

I implement zetaEMS(s,N,v) in Sage, using built-in library for Bernoulli constants, to
evluate ζ(s) with truncated N -term sum and ν Bernoulli terms. The error of zetaEMS is
evaluated by cross-checking with the multiprecision built-in ζ function in mpmath package.

Figure 2.1 shows the linear relationship between N and |s| for any given precision: each
gray-level error lines up in a straight line in the T −N plane.

Despite its runtime, EMS works consistently for every value of s ∈ C, s 6= 1, and is
used in standard algorithm for arbitrary precision computation of ζ in major symbolic
algebra packages such as Maple, Mathematica, and Pari.
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def zetaEMS(s,N,v):

sum = 0

for j in range(1,N):

sum = sum + j**(-s)

sum = sum + N**(1-s)/(s-1) + N**(-s)/2

sprod = s

fact = 1

Npower = N**(1-s)

for k in range(1,v):

b = bernoulli(2*k)

fact = fact*(2*k-1)*2*k

Npower = Npower/(N**2)

sum = sum + b/fact*sprod*Npower

sprod = sprod*(s+2*k-1)*(s+2*k)

return sum

Figure 2.1: Error by EMS in estimating ζ(0.3 + iT ) fixing ν = 10
Horizontal axis – T Vertical axis – N

6



2.2 Riemann Siegel Formula

An important part of evaluation of ζ is along the critical line. The Riemann Siegel method
involes estimates of the Rieman Siegel Z-function, which is defined as

Z(t) = eiθ(t)ζ

(
1

2
+ it

)
(7)

where θ is the Riemann-Siegel θ function:

θ(t) = arg

(
Γ

(
2it+ 1

4

))
− log π

2
t (8)

Both Z(t) and θ(t) can be estimated relatively fast, which yields an efficient algorithm
to calculate ζ on the critical line.

Riemann-Siegel θ function has an asymtotic expansion

θ(t) =
t

2
log

t

2π
− t

2
− π

8
+

1

48t
+

7

5760t3
+ . . .

which is not convergent, but the terms decrease very rapidly for t at all large.

Let τ = t
2π
,m = bτ 1/2c and z = 2(τ 1/2 −m)− 1, then

Z(t) =
m∑
k=1

2k−1/2 cos[θ(t)− t log k] + (−1)m+1τ−1/4
n∑
j=0

Φj(z)(−1)jτ−j/2 +Rn(τ).

where Φj are entire functions which may be expressed in terms of derivatives of

Φ0(z) = Φ(z) =
cos
(

(4z2+3)π
8

)
cos(πz)

Φ1(z) =
Φ(3)(z)

12π2

Φ2(z) =
Φ(2)(z)

16π2
+

Φ(6)(z)

288π4

The error term Rn(τ) is bounded above by O
(
τ−(2n+3)/4

)
. Typically, mathematicians

have chosen n = 2, and use some conservative bound for their calculation. For example,
Brent used |R2(τ)| < 3τ−7/4 for τ > 2000.
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3 General scheme to investigate Riemann’s

hypothesis by computation

Even though Riemann hypothesis remains unproved, many computational efforts have
yielded strong evidences supporting it. Let {ρn} be the list of zeros of ζ sorted in ascending
order with respect to Im (ρ), and let H(n) be the statement that the first n roots are on
the critical line. As of 2004, H(n) has been confirmed for n = 1013.

3.1 Techniques for locating roots on the line

Roots of ζ on the line {s ∈ C : Re (s) = 1
2
} is found via the Riemann-Siegel Z-function

defined in (7). Because Riemann-Siegel Z function is real-valued on the line Re (s) = 1
2
,

its number of zeros can be counted by the number of changes sign.

Gram’s law:
For n ∈ Z+, the nth Gram point gn is the solution of the equation θ(t) = nπ. Gram’s
law is the tendency of the zeros of Z to alternate with the Gram point gn.

Figure 3.1: Riemann Siegel Z(t)’s tendency to change sign with Gram points

Even though Gram’s law fails for infinitely many gn, it provides a helpful starting points
for finding roots of Z.
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3.2 Techniques for counting the number of roots in given range

In order to count the number of roots of the ζ function, we turn to the entire function ξ
defined in equation (4). Let N(T ) be the number of roots of ζ such that 0 < Im s < T ,
then N(T ) is also the number of roots of ξ in the same portion of the critical strip.
Therefore,

N(T ) =
1

2πi

∫
δR

ξ′(s)

ξ(s)
ds (9)

where R is the rectangle {−ε ≤ Re s ≤ 1 + ε, 0 ≤ Im s ≤ T} and δR its boundary,
assuming that there are no roots of ξ on the line Im s = T .
By symmetry of ξ given by the functional equation and the fact that ξ(s) ∈ R for s ∈ R,
we can write

N(T ) =
1

2π
· 2 Im

[∫
C

ξ′(s)

ξ(s)
ds

]
=
θ(T )

π
+ 1 +

1

π
Im

∫
γ

ζ ′(s)

ζ(s)
ds (10)

where γ is the path from 1 + ε to 1
2

+ Ti. Equation (10) allows us to evaluate N(T )
accurately as N(T ) ∈ Z+.

An alternative method is to bound N(T ) using the following result. We call a Gram
point gj good if (−1)jgj > 0, and bad otherwise. A Gram block of length k is an interval
[gj, gj+k) such that gj and gj+k are good and gj+1, . . . , gj+k−1 are bad.

Littlewood-Turing Theorem:

Define S(T ) = N(t)− 1− θ(t)/π. If A = 0.114, B = 1.71, C = 168π and C < u < v, then∣∣∣∣∫ v

u

S(t)dt

∣∣∣∣ < A ln(v) +B

If A = 0.114, B = 1.71, C = 168π and C < u < v, then∣∣∣∣∫ v

u

S(t)dt < A ln(v) +B

∣∣∣∣
Consequently, if K consecutive Gram blocks with union [gn, gp) satisfy Rosser’s rule,
where K ≥ 0.0061(ln(gp))

2 + 0.08 ln(gp), then N(gn) ≤ n+ 1 and N(gp) ≥ p+ 1.
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3.3 History of Calculation

The following table shows the achievement of computational methods to verify Riemann
hypothesis, proving H(n) is true for n = 1013.

Year n Author
1903 15 J. P. Gram
1914 79 R. J. Backlund
1925 138 J. I. Hutchinson
1935 1 041 E. C. Titchmarsh
1953 1 104 A. M. Turing
1956 15 000 D. H. Lehmer
1956 25 000 D. H. Lehmer
1958 35 337 N. A. Meller
1966 250 000 R. S. Lehman
1968 3 500 000 J. B. Rosser, J. M. Yohe, L. Schoenfeld
1977 40 000 000 R. P. Brent
1979 81 000 001 R. P. Brent
1982 200 000 001 R. P. Brent, J. van de Lune, H. J. J. te Riele, D. T. Winter
1983 300 000 001 J. van de Lune, H. J. J. te Riele
1986 1 500 000 001 J. van de Lune, H. J. J. te Riele, D. T. Winter
2001 10 000 000 000 J. van de Lune (unpublished)
2004 900 000 000 000 S. Wedeniwski
2004 10 000 000 000 000 X. Gourdon and P. Demichel
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