Math 56 Compu & Expt Math, Spring 2013: Homework 3

due 10am Thursday April 18th

- 1. Here you learn how to "roll your own" finite difference formulae. Let's say you have access to f at only x, x + h, and x + 2h, and want a 2nd-order accurate approximation to f'(x). Note that this is at the leftmost point of the three; e.g. at the extreme end of a grid of values.
 - (a) Set $f'(x) \approx af(x) + bf(x+h) + cf(x+2h)$, expand the right-hand side via Taylor series about x, then write out the three rows of a linear system resulting from equating powers of h^0 , h^1 and h^2 . Write your linear system in matrix-vector notation.

- (b) Solve the system either by hand or computer, hence write your new finite difference formula. How do you know the solution is unique?
- (c) Give a *rigorous* upper bound on the error of this formula (in exact arithmetic, i.e. ignore rounding).
- 2. Stability.
 - (a) Show whether subtraction $x_1 x_2$ is backwards stable (with respect to the two input data) under the rules of floating point.
 - (b) In a worksheet you found that 1 + x as done by the rules of floating point arithmetic is not backward stable. Show whether 1 + x is *stable* or not.
- 3. Here's a new formula for matrix 2-norm:

 $||A|| = \sqrt{\lambda_{\max}(A^T A)},$ where $\lambda_{\max}(A^T A)$ is the largest eigenvalue of the matrix $A^T A$.

- (a) Let $A = \begin{bmatrix} 1 & -1 \\ 2 & 2 \end{bmatrix}$. Use the new formula to compute by hand ||A||. How does it compare to the size of the largest eigenvalue of A? (for which you can use **eig**)
- (b) Use this to compute the matrix condition number $\kappa(A)$. Is it well-conditioned?
- (c) Take 100 points $\mathbf{x} \in \mathbb{R}^2$ equi-spaced on the unit circle, and plot them, and $A\mathbf{x}$ for each. What geometric property does $\kappa(A)$ measure of the ellipse produced?
- 4. Download the two 100×100 matrices A1 and A2 from the HW page, and use textread to read them into Matlab (you will need to reshape them).
 - (a) Compare their matrix 2-norms and condition numbers. What worst-case relative errors do you expect for solving linear systems with matrix A1? With A2? (Use our backward stability theorem, and assume standard double precision.)
 - (b) Let's focus on A = A1, and load in the RHS $\mathbf{b} = \mathbf{bvec}$ from the HW page. Solve $A\mathbf{x} = \mathbf{b}$. Then perturb \mathbf{b} by a random vector of norm $\varepsilon_{\text{mach}}$ to get $\tilde{\mathbf{b}}$ (this emulates rounding error applied to the RHS), and solve again $A\tilde{\mathbf{x}} = \tilde{\mathbf{b}}$. What relative norm change $\|\tilde{\mathbf{x}} \mathbf{x}\| / \|\mathbf{x}\|$ results? Does this match your prediction from (a)?
 - (c) Repeat (b) except using the RHS c = cvec from the HW page. Surprising? Is it consistent with
 (a)? Repeat for random unit-norm RHS vectors—do they behave more like b or like c?
- BONUS Explain the different behaviors [hint: $\|\mathbf{x}\|$], deducing how the directions of **b** and **c** relate to long and short axes of the ellipse of the image of the unit sphere under A.

- (d) Given A ∈ ℝ^{M×P} and B ∈ ℝ^{P×N}, prove a bound on ||AB|| in terms of the norms of the individual matrices. [Hint: HW2 6(c).]
- 5. Recursion, and some "turtle" drawing in the complex plane.
 - (a) Make a function y = koch(z,s) which given complex numbers z and s returns y = z + s and adds the line segment from z to y to the current figure (followed by hold on).
 - (b) Make a driver which uses four calls to koch to draw the generator for the Koch curve: ___________ Each segment in the generator is length 1/3, and the angles are integer multiples of $\pi/3$. Here's how to do it using the stopping point y as the starting point for the next segment each time:

z = 0; y = koch(z,1/3); y = koch(y,1/3*exp(1i*pi/3)); ...

(c) Incorporate something like (b) into koch so that it draws a generator composed of four Koch curves unless $|s| < 10^{-3}$, in which case it reverts to the original simple line segment. As before, the y returned should be the final pen position. The call koch(0,1) should then produce a the Koch curve fractal—include a plot [Hint: it's a bit slow. Also, axes equal]