Math 56 Compu \& Expt Math, Spring 2013: Homework 3

due 10am Thursday April 18th

1. Here you learn how to "roll your own" finite difference formulae. Let's say you have access to f at only $x, x+h$, and $x+2 h$, and want a 2 nd-order accurate approximation to $f^{\prime}(x)$. Note that this is at the leftmost point of the three; e.g. at the extreme end of a grid of values.
(a) Set $f^{\prime}(x) \approx a f(x)+b f(x+h)+c f(x+2 h)$, expand the right-hand side via Taylor series about x, then write out the three rows of a linear system resulting from equating powers of h^{0}, h^{1} and h^{2}. Write your linear system in matrix-vector notation.
[AATEX hint: \left[\begin\{array\}\{lll\} x \& y \& z
w ... \end\{array\}\right]] }
(b) Solve the system either by hand or computer, hence write your new finite difference formula. How do you know the solution is unique?
(c) Give a rigorous upper bound on the error of this formula (in exact arithmetic, i.e. ignore rounding).
2. Stability.
(a) Show whether subtraction $x_{1}-x_{2}$ is backwards stable (with respect to the two input data) under the rules of floating point.
(b) In a worksheet you found that $1+x$ as done by the rules of floating point arithmetic is not backward stable. Show whether $1+x$ is stable or not.
3. Here's a new formula for matrix 2-norm:

$$
\|A\|=\sqrt{\lambda_{\max }\left(A^{T} A\right)}, \quad \text { where } \lambda_{\max }\left(A^{T} A\right) \text { is the largest eigenvalue of the matrix } A^{T} A
$$

(a) Let $A=\left[\begin{array}{ll}1 & -1 \\ 2 & 2\end{array}\right]$. Use the new formula to compute by hand $\|A\|$. How does it compare to the size of the largest eigenvalue of A ? (for which you can use eig)
(b) Use this to compute the matrix condition number $\kappa(A)$. Is it well-conditioned?
(c) Take 100 points $\mathbf{x} \in \mathbb{R}^{2}$ equi-spaced on the unit circle, and plot them, and $A \mathbf{x}$ for each. What geometric property does $\kappa(A)$ measure of the ellipse produced?
4. Download the two 100×100 matrices A1 and A2 from the HW page, and use textread to read them into Matlab (you will need to reshape them).
(a) Compare their matrix 2 -norms and condition numbers. What worst-case relative errors do you expect for solving linear systems with matrix A1? With A2? (Use our backward stability theorem, and assume standard double precision.)
(b) Let's focus on $A=\mathrm{A} 1$, and load in the RHS $\mathbf{b}=\mathrm{bvec}$ from the HW page. Solve $A \mathbf{x}=\mathbf{b}$. Then perturb \mathbf{b} by a random vector of norm $\varepsilon_{\text {mach }}$ to get $\tilde{\mathbf{b}}$ (this emulates rounding error applied to the RHS), and solve again $A \tilde{\mathbf{x}}=\tilde{\mathbf{b}}$. What relative norm change $\|\tilde{\mathbf{x}}-\mathbf{x}\| /\|\mathbf{x}\|$ results? Does this match your prediction from (a)?
(c) Repeat (b) except using the RHS c = cvec from the HW page. Surprising? Is it consistent with (a)? Repeat for random unit-norm RHS vectors - do they behave more like \mathbf{b} or like \mathbf{c} ?

BONUS Explain the different behaviors [hint: $\|\mathbf{x}\|$], deducing how the directions of \mathbf{b} and \mathbf{c} relate to long and short axes of the ellipse of the image of the unit sphere under A.
(d) Given $A \in \mathbb{R}^{M \times P}$ and $B \in \mathbb{R}^{P \times N}$, prove a bound on $\|A B\|$ in terms of the norms of the individual matrices. [Hint: HW2 6(c).]
5. Recursion, and some "turtle" drawing in the complex plane.
(a) Make a function $\mathrm{y}=\operatorname{koch}(\mathrm{z}, \mathrm{s})$ which given complex numbers z and s returns $y=z+s$ and adds the line segment from z to y to the current figure (followed by hold on).
(b) Make a driver which uses four calls to koch to draw the generator for the Koch curve:

Each segment in the generator is length $1 / 3$, and the angles are integer multiples of $\pi / 3$. Here's how to do it using the stopping point y as the starting point for the next segment each time:

```
z = 0;
y = koch(z,1/3);
y = koch(y,1/3*exp(1i*pi/3)); ...
```

(c) Incorporate something like (b) into koch so that it draws a generator composed of four Koch curves unless $|s|<10^{-3}$, in which case it reverts to the original simple line segment. As before, the y returned should be the final pen position. The call $\operatorname{koch}(0,1)$ should then produce a the Koch curve fractal - include a plot [Hint: it's a bit slow. Also, axes equal]

