Math 56 Compu \& Expt Math, Spring 2013: Midterm 1

4/18/13, pencil and paper, $2 \mathrm{hrs}, 50$ points. Good luck!

1. [9 points]
(a) Say a computer's algorithm for e^{x} has relative error in the output of up to $\varepsilon_{\text {mach }}$, for $-1 \leq x \leq 1$. Does this guarantee that the algorithm is backward stable in this domain?
(b) Repeat the question for $\sin x$ in the same domain.
(c) For some x outside $[-1,1]$ one of the above algorithms cannot be backward stable. Which one, and for what x ?
2. [8 points] Consider $f(x)=1 /\left(2+x^{2}\right)$.
(a) What type, and order/rate, do you expect for convergence of the Taylor series truncated to terms less than x^{n}, expanding about the origin, when evaluated at $x=0.5$? Explain

Write an upper bound on the error reflecting this convergence, in big-O notation:
(b) Estimate up to what power x^{n} is needed for this series to reach 16-digit accuracy.
3. [8 points] Consider the "left-sided" finite-difference approximation $f^{\prime}(x) \approx \frac{f(x)-f(x-h)}{h}$
(a) Derive a rigorous bound on the error that applies to each $h>0$ [Hint: your bound will need to involve properties of f]
(b) What axes would one choose on a graph so that the error appears as a straight line and yet data at $h=10^{-4}, 10^{-8}, 10^{-12}$ are all visible?
(c) Explain what happens to the error of the approximation in practice as $h \rightarrow 0$

BONUS Roughly what h has the smallest error?
4. [7 points] Consider the linear system $\left[\begin{array}{ll}1 & 0 \\ 10^{5} & 1\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=\left[\begin{array}{l}b_{1} \\ b_{2}\end{array}\right]$

How many digits accuracy (relative to the solution norm $\sqrt{x_{1}^{2}+x_{2}^{2}}$) are you guaranteed in the solution if the system is solved by a backward stable algorithm with $\varepsilon_{\text {mach }}=10^{-16}$?
[You may assume a constant of 1 in the backward stability. Hint: full points for rigorous upper bound on the error; generous partial credit for intelligent estimates or other bounds]
[BONUS] Find a right-hand side \mathbf{b} for which the above worst-case prediction is (nearby) achieved.
5. [7 points] Given $y>0$, you wish to approximate $x=\sqrt{y}$ using elementary operations.
(a) Derive a Newton iteration that converges to the desired x [Hint: x must be a root of something]
(b) Derive a big-O estimate on the error ε_{n} after n iterations.
6. [11 points] Short answers.
(a) Prove whether $N+\frac{N}{\left(\log _{10} N\right)-7}=O(N)$, giving, if true, a constant and corresponding condition on N.
(b) Prove whether $\sqrt{1+x^{2}} \sin x=o(x)$ as $x \rightarrow \infty$
(c) How close to 1 does x have to be such that the relative condition number of computing $\sqrt{x-1}$ is $10^{8} ?$
(d) Prove that $\left\|A^{-1}\right\|=\left(\min _{\mathbf{x} \neq \mathbf{0}} \frac{\|A \mathbf{x}\|}{\|\mathbf{x}\|}\right)^{-1}$
(e) Give a definition of an algorithm $\tilde{f}(x)$ for a problem $f(x)$ being stable:

