- 1. Prove Theorem M19.4: If X_{α} is Hausdorff for all $\alpha \in I$, then $\prod_{\alpha \in I} X_{\alpha}$ is Hausdorff when given either the box topology or the product topology.
- 2. Prove that the intervals [0, 1], (0, 1), and [0, 1) are not homeomorphic as subspaces of \mathbb{R} . **Hint:** If you remove the point $x = \frac{1}{2}$ from any of these sets, the resulting space is disconnected.
- 3. The goal of this problem is to show that differentiable functions whose derivatives vanish are locally constant.
 - (a) Consider (X, \mathscr{T}_d) . Prove that the only connected sets are $\{x\}$ for $x \in X$.
 - (b) Let X be connected and $f: X \to Y$ locally constant.¹ Prove that f is a constant function.
 - (c) Let U be an open subset of R and f : U → R a differentiable function such that f' ≡ 0 (i.e., f'(x) = 0 for all x ∈ U). Prove that f is locally constant.
 Hint/Warning: A function with vanishing derivative need not be constant.
- 4. (Chain Lemma) Assume $X = \bigcup_{n=1}^{\infty} X_n$ where each X_n is connected and $X_{n-1} \cap X_n \neq \emptyset$ for all $n \in \mathbb{Z}_+$. Prove that X is connected.
- 5. Let $f: X \to Y$ be a continuous function. Prove that if X is path connected then f(X) is path connected.
- 6. (Brouwer Fixed-Point Theorem)² Prove that any continuous function $f : [-1, 1] \to [-1, 1]$ has a fixed point. That is, $\exists x$ so that f(x) = x.

¹We defined locally constant functions in Homework 7.

²This is the 1-dimensional version of this theorem. We will hopefully cover the more general version later in class.