1. Let X and Y be topological spaces and \mathscr{B}_{Y} a basis for the topology on Y. Without using Thm 10.9 (i.e., using only the definition), prove that a function $f: X \rightarrow Y$ is continuous if and only if $f^{-1}(B)$ is open in X for every $B \in \mathscr{B}_{Y}$.
2. Prove that the function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ given by $f(x, y)=\left\{\begin{array}{ll}1-x^{2}-y^{2} & x^{2}+y^{2} \leq 1 \\ x^{2}+y^{2}-1 & x^{2}+y^{2} \geq 1\end{array}\right.$ is continuous. (As a starting point, prove that polynomials in two variables are continuous.)
3. (Weak Topologies) The motivation behind a topology is that it is the minimal structure to make sense of continuous functions. In this problem, we will motivate the definition of the product topology in this context.
Let X_{1} and X_{2} be topological spaces and consider the projection maps $\pi_{1}: X_{1} \times X_{2} \rightarrow X_{1}$ and $\pi_{2}: X_{1} \times X_{2} \rightarrow X_{2}$. Prove that the product topology $\mathscr{T}_{X_{1} \times X_{2}}$ on $X_{1} \times X_{2}$ is the coarsest topology on which π_{1} and π_{2} are continuous. ${ }^{1}$
4. (Stereographic Projection) Define a function $f: S^{1} \backslash\{(0,1)\} \rightarrow \mathbb{R}$ as follows:

- Let $p \in S^{1} \backslash\{(0,1)\}$.
- Consider the ray r_{p} starting at $(0,1)$ and passing through the point p.
- Let $\left(x_{p}, 0\right)$ be the point where r_{p} intersects the x-axis. Define $f(p)=x_{p}$.

This map is the stereographic projection of the circle onto the real line.
(a) Prove that f is well-defined (i.e., f is a function).
(b) Give an explicit definition of f.
(c) Prove that f is a homeomorphism. To show that f is open, it is enough to argue descriptively. That is, no formal write-up is required but an explanation should be provided.
Hint: To show the continuity of f, consider the explicit definition from part (b). Extending the domain to $\left\{(x, y) \in \mathbb{R}^{2} \mid y<1\right\}$, the function f is still defined. Prove that this function is continuous and make the desired conclusion.
5. Prove that the composition of two homeomorphisms is a homeomorphism.
6. (Locally Constant) A function $f: X \rightarrow Y$ is locally constant if, for every $x \in X$, there is a neighborhood U of x such that $\left.f\right|_{U}$ is a constant function.
Let X be a topological space. Prove that f is locally constant if and only if f is continuous when Y is given the discrete topology.

[^0]
[^0]: ${ }^{1}$ This construction generalizes substantially: given functions $f_{\alpha}: Y \rightarrow X_{\alpha}$ from a set Y to topological spaces X_{α} for $\alpha \in I$, there is a coarsest topology, known as the weak topology, on Y which makes the functions f_{α} continuous.

