- 1. Determine (prove or disprove) whether the following spaces are Hausdorff, T_1 , or neither:
 - \mathbb{R}_{ℓ}
 - $(\mathbb{R}, \mathscr{T}_f)$
 - $(\mathbb{R} \times \mathbb{R}, \mathscr{T}_{lex})$
- 2. Find the limit points of A = [0, 1) in each of the following spaces:
 - \mathbb{R}
 - (-1,1) as a subspace of \mathbb{R}
 - $(\mathbb{R}, \mathscr{T}_d)$
- 3. Let (X, \mathscr{T}) be a topological space and $A \subset X$. Prove:
 - (a) Int A is open in X.
 - (b) $\operatorname{Bd} A = \overline{A} \cap \overline{X \setminus A}$. (Conclude that $\operatorname{Bd} A$ is closed in X.)
 - (c) Let $A' = \{ \text{limit points of } A \}$. Determine whether A' is (in general) an open set.
- 4. Consider \mathbb{R} (with its usual topology). By using the interior and closure operations, we can obtain different sets. What happens when we use these operators repeatedly?
 - (a) Find a set $A \subset \mathbb{R}$ so that $A, \operatorname{Cl} A$, and $\operatorname{Int} A$ are pairwise distinct.
 - (b) Find a set $A \subset \mathbb{R}$ so that we obtain 4 pairwise distinct sets by applying combinations of Int and Cl to A (e.g., A, Cl A, Int A, and Cl Int A).
 - (c) Find a set $A \subset \mathbb{R}$ so that we obtain 5 pairwise distinct sets in this way.
 - (d) (Optional/Bonus) Determine the maximum number of pairwise distinct sets that can be obtained in this way and prove it. Along the way, share an example of a set that obtains this maximum.