1. (Subspace open and closed sets.) Consider \mathbb{R} (with its usual topology). Let $A=[0,6]$ and $B=[0,2) \cup\{3,4\}$ be subspaces of \mathbb{R}. Determine whether the following sets are open, closed, clopen, or neither in each subspace (justify by showing what open/closed set works):

	$[0,1)$	$\{3,4\}$	$[1,2)$
A			
B			

2. For each set listed, find the interior, boundary, and closure in each of the listed spaces (no justification is required!):

- $A=[0,1) \cup(1,2)$.

	$\operatorname{Int} A$	$\operatorname{Bd} A$	\bar{A}
\mathbb{R}			
\mathbb{R}_{ℓ}			
$\left(\mathbb{R}, \mathscr{T}_{d}\right)$			

- $A=[0,1) \times(0,1)$.

	$\operatorname{Int} A$	$\operatorname{Bd} A$	\bar{A}
$\mathbb{R} \times \mathbb{R}$			
$\mathbb{R}_{\ell} \times \mathbb{R}$			

Hint: Draw pictures of the set A and what the typical open sets in each space look like.
3. Consider $\left(\mathbb{R}, \mathscr{T}_{f}\right)$. Let $A \subset \mathbb{R}$ be infinite. Show that every point $x \in \mathbb{R}$ is a limit point of A.
4. Consider \mathbb{R} (with its usual topology). By using the interior and closure operations, we can obtain different sets. What happens when we use these operators repeatedly?
(a) Find a set $A \subset \mathbb{R}$ so that $A, \mathrm{Cl} A$, and $\operatorname{Int} A$ are pairwise distinct.
(b) Find a set $A \subset \mathbb{R}$ so that we obtain 4 pairwise distinct sets by applying combinations of Int and Cl to A (e.g., $A, \mathrm{Cl} A$, $\operatorname{Int} A$, and $\mathrm{ClInt} A$).
(c) Find a set $A \subset \mathbb{R}$ so that we obtain 5 pairwise distinct sets in this way.
(d) (Optional/Bonus) Determine the maximum number of pairwise distinct sets that can be obtained in this way and prove it. Along the way, share an example of a set that obtains this maximum.

