- 1. Let (X, \mathscr{T}) be a topological space and $A \subset B \subset X$. There are two topologies we could naturally place on A:
 - (1) The subspace topology \mathscr{T}_A coming from \mathscr{T} ,
 - (2) The subspace topology $(\mathscr{T}_B)_A$ coming from (B, \mathscr{T}_B) .

Show that these two topologies are the same.

- 2. Define $N_{a,b} = \{an + b \mid n \in \mathbb{Z}\}$ (so $N_{a,b} \subset \mathbb{Z}$) and let $\mathscr{N} = \{N_{a,b} \mid \gcd(a,b) = 1\}$. Prove that:
 - (a) \mathcal{N} is a basis for a topology on \mathbb{Z} .
 - (b) Every open set in this topology (other than \emptyset) has infinitely many elements.
- 3. Consider (X, \mathscr{T}_d) and (Y, \mathscr{T}_t) . Describe the product topology on $X \times Y$ without mention of a basis.
- 4. Let (X_i, \mathscr{T}_i) be a topological space for i = 1, 2, 3. Define a product topology on $X_1 \times X_2 \times X_3$. Then generalize this definition.
- 5. Determine whether each of the following sets is open in each of $\mathbb{R}, \mathbb{R}_{\ell}, (\mathbb{R}, \mathscr{T}_d), (\mathbb{R}, \mathscr{T}_f),$ and $(\mathbb{R}, \mathscr{T}_t)$:
 - $A = \{x \in \mathbb{R} \mid x \neq \pi, -\pi\}.$
 - $B = \{x \in \mathbb{R} \mid x \notin \mathbb{Z}\}.$