1. Let $\mathscr{C} = \{(a, b) \mid a, b \in \mathbb{Q}\}$. This collection is a basis for a topology on \mathbb{R} . Prove that:

- (a) $\mathscr{T}_{\mathscr{C}}$ is the usual topology on \mathbb{R} .
- (b) \mathbb{R} has a countable basis (i.e., a basis whose cardinality is countable).
- 2. Let $\mathscr{D} = \{[a, b) \mid a, b \in \mathbb{Q}\}$. Prove that:
 - (a) \mathscr{D} is a basis for a topology on \mathbb{R} .
 - (b) $\mathscr{T}_{\mathscr{T}}$ is different from the lower limit topology (i.e., the topology on \mathbb{R}_{ℓ}).
- 3. Define a relation "odd is always greater" on \mathbb{Z} by:

 $a \prec b \Leftrightarrow \begin{cases} a < b \text{ and both } a \text{ and } b \text{ are even} \\ a < b \text{ and both } a \text{ and } b \text{ are odd} \\ a \text{ is even and } b \text{ is odd} \end{cases}$

- (a) Prove that \prec is a linear order on \mathbb{Z} .
- (b) Explicitly describe the following sets:

•
$$(-\infty,0) =$$

(c) Prove that $\mathscr{T}_{\prec} = \mathscr{T}_d$.