Topology: Homework 2

1. Let A and B be sets. Prove or disprove each of the following statements:
(a) $\mathscr{P}(A \cup B)=\mathscr{P}(A) \cup \mathscr{P}(B)$,
(b) $\mathscr{P}(A \cap B)=\mathscr{P}(A) \cap \mathscr{P}(B)$,
(c) $\mathscr{P}(A \backslash B)=\mathscr{P}(A) \backslash \mathscr{P}(B)$.

Solution or

Proof. Proof.
2. Let $f: X \rightarrow Y$ be a function. Prove or disprove each of the following:
(a) If $B \subset Y$ then $f^{-1}(Y \backslash B)=X \backslash f^{-1}(B)$.
(b) For any collection $\left\{A_{\alpha} \mid A_{\alpha} \subset X\right\}_{\alpha \in I}$,

$$
f\left(\bigcap_{\alpha \in I} A_{\alpha}\right)=\bigcap_{\alpha \in I} f\left(A_{\alpha}\right) .
$$

(c) For any collection $\left\{B_{\beta} \mid B_{\beta} \subset Y\right\}_{\beta \in J}$,

$$
f^{-1}\left(\bigcap_{\beta \in J} B_{\beta}\right)=\bigcap_{\beta \in J} f^{-1}\left(B_{\beta}\right) .
$$

3. Prove that \mathbb{Q} is countably infinite.
4. Find a bijection between the intervals $[0,1]$ and $(0,1)$.
5. Let (X, \mathscr{T}) be a topological space. Prove that a set A is open if and only if for all $p \in A$ there is an open set $U_{p} \in \mathscr{T}$ such that $p \in U_{p} \subset A$.
6. Let $X=\{a, b, c, d\}$ and $\mathscr{T}=\{\varnothing,\{a\},\{b, c\},\{c, d\},\{a, b, c\}\}$. Explain why (X, \mathscr{T}) is not a topological space and then modify \mathscr{T} to make it a topology on X.
