1. Let A and B be sets. Prove or disprove each of the following statements:

(a) $\mathscr{P}(A \cup B) = \mathscr{P}(A) \cup \mathscr{P}(B)$, (b) $\mathscr{P}(A \cap B) = \mathscr{P}(A) \cap \mathscr{P}(B)$, (c) $\mathscr{P}(A \setminus B) = \mathscr{P}(A) \setminus \mathscr{P}(B)$.

Solution or

Proof. Proof.

- 2. Let $f: X \to Y$ be a function. Prove or disprove each of the following:
 - (a) If $B \subset Y$ then $f^{-1}(Y \setminus B) = X \setminus f^{-1}(B)$.
 - (b) For any collection $\{A_{\alpha} \mid A_{\alpha} \subset X\}_{\alpha \in I}$,

$$f(\bigcap_{\alpha\in I}A_{\alpha})=\bigcap_{\alpha\in I}f(A_{\alpha}).$$

(c) For any collection $\{B_{\beta} \mid B_{\beta} \subset Y\}_{\beta \in J}$,

$$f^{-1}(\bigcap_{\beta\in J}B_{\beta}) = \bigcap_{\beta\in J}f^{-1}(B_{\beta}).$$

- 3. Prove that \mathbb{Q} is countably infinite.
- 4. Find a bijection between the intervals [0,1] and (0,1).
- 5. Let (X, \mathscr{T}) be a topological space. Prove that a set A is open if and only if

for all $p \in A$ there is an open set $U_p \in \mathscr{T}$ such that $p \in U_p \subset A$.

6. Let $X = \{a, b, c, d\}$ and $\mathscr{T} = \{\varnothing, \{a\}, \{b, c\}, \{c, d\}, \{a, b, c\}\}$. Explain why (X, \mathscr{T}) is not a topological space and then modify \mathscr{T} to make it a topology on X.