1. (Classification of 1-manifolds, part 2) Continuing from HW11\#2, these problems will almost complete the classification of 1-manifolds. Let M be a 1-manifold with atlas

$$
\mathscr{A}=\{(\varphi, U) \mid \varphi: U \rightarrow(0,1) \text { is a homeomorphism }\}
$$

and $(\varphi, U),(\psi, V) \in \mathscr{A}$.
(a) Assume that M is connected and $U \cap V$ has two connected components. Prove that M is homeomorphic to S^{1}.

Hint:

i. Let W_{0} and W_{1} be the connected components of $U \cap V$. Show that (φ, U) and (ψ, V) overlap. Apply HW11\#2(c) and argue that we may assume $\varphi\left(W_{0}\right)$ and $\psi\left(W_{0}\right)$ are lower and that $\varphi\left(W_{1}\right)$ and $\psi\left(W_{1}\right)$ are upper.
ii. Write

$$
\varphi\left(W_{0}\right)=(0, a), \varphi\left(W_{1}\right)=\left(a^{\prime}, 1\right), \quad \psi\left(W_{0}\right)=(0, b), \psi\left(W_{1}\right)=\left(b^{\prime}, 1\right)
$$

Let S be the boundary of $[0,1] \times[0,1]$. That is, $S=(\{0,1\} \times[0,1]) \cup([0,1] \times\{0,1\})$. Define a function $f:[0,1] \rightarrow S$ by a piecewise linear map so that

$$
f(0)=(0,0), f(a)=(1,0), f\left(a^{\prime}\right)=(1,1), f(1)=(0,1) .
$$

Define $g:\left[b, b^{\prime}\right] \rightarrow S$ linearly by

$$
g(b)=(0,0), g\left(b^{\prime}\right)=(0,1)
$$

Finally, define $\eta: U \cup V \rightarrow S$ by $\eta(x)=\left\{\begin{array}{ll}f \circ \varphi(x) & x \in U \\ g \circ \psi(x) & x \in V \backslash U\end{array}\right.$. Prove that η is a homeomorphism of $U \cup V$ and S.
iii. Using (ii), show that $U \cup V$ is compact. Using the connectedness of M, conclude that η is a homeomorphism of M and S.
(b) Assume (φ, U) and (ψ, V) overlap and that $U \cap V$ is connected. Prove that $U \cup V$ is homeomorphic to $(0,1)$.
Hint: Let $W=U \cap V$. Applying HW11\#2(c), assume that $\varphi(W)$ and $\psi(W)$ are upper. Let $\psi(W)=(b, 1)$. Define $\eta: U \cup V \rightarrow(0,1)$ by $\eta(x)=\left\{\begin{array}{ll}\varphi(x) & x \in U \\ 1+b-\psi(x) & x \in V \backslash U\end{array}\right.$.
2. Determine which compact surface has word $a b d^{-1} c a b^{-1} d^{-1} c$.
3. Consider the Latin alphabet

ABCDEFGHIJKLMNOPQRSTUVWXYZ

Partition these characters (considered as topological spaces) into sets in two ways:
(a) by homeomorphism (i.e., the spaces are pairwise homeomorphic) and
(b) by homotopy equivalence.

Note: No explicit maps or justification are required.
4. Let $p_{1}, p_{2}, p_{3} \in S^{2}$ be distinct points and consider the thrice-punctured sphere

$$
X=S^{2} \backslash\left\{p_{1}, p_{2}, p_{3}\right\}
$$

Deform X until it is easy to describe and call the result Y. Choose a base point y_{0} and describe the "essential" loops for the fundamental group $\pi_{1}\left(Y, y_{0}\right)$.

