TOPOLOGY: HOMEWORK 11

- 1. Let M_1 be an *n*-manifold and M_2 an *m*-manifold. Prove that $M_1 \times M_2$ is a (n+m)-manifold.
- 2. (Classification of 1-manifolds, part 1) Let

 $\mathscr{A} = \{(\varphi, U) \mid \varphi : U \to (0, 1) \text{ is a homeomorphism} \}$

be an atlas on a 1-manifold M and let $(\varphi, U), (\psi, V) \in \mathscr{A}$.

IMPORTANT: This is an atlas because \mathbb{R} is homeomorphic to (0,1). However, taking (0,1) to be the codomain of our charts will make this problem easier to work through.

(a) Assume U ∩ V ≠ Ø and U \ V ≠ Ø. Prove that if {x_n}_{n=1}[∞] is a sequence in U ∩ V converging to x ∈ U \ V then {ψ(x_n)}_{n=1}[∞] has no limit in ψ(V).
Hint: Use the fact that M is Hausdorff. An old result from class will help.

THE OSE the fact that *M* is frausdoffi. All old result from class will help.

- (b) Let $I \subset (0,1)$ be a proper open subinterval. Then I is $\begin{cases} upper & \text{if } I = (a,1) \\ lower & \text{if } I = (0,b) \end{cases}$ where 0 < a and b < 1. In either case, I is called *outer*. Prove that I is outer if and only if there is a sequence in I which doesn't converge in (0,1).
- (c) We say that (φ, U) and (ψ, V) overlap if $U \cap V \neq \emptyset$, $U \setminus V \neq \emptyset$, and $V \setminus U \neq \emptyset$. Assume that (φ, U) and (ψ, V) overlap and let W be a connected component of $U \cap V$. Prove that $\varphi(W)$ and $\psi(W)$ are outer.

Hint: First show that $\varphi(W)$ is a proper subinterval of $\varphi(U) = (0, 1)$. Using (a) or the fact that manifolds are locally connected, show that $\varphi(W)$ is an open interval. By symmetry of the argument, $\psi(W)$ will also be a proper open interval. Using the characterization in (b), construct a sequence in $\varphi(W)$ and use (a) again to show that $\psi(W)$ is outer. Conclude that $\varphi(W)$ must also be outer.

- (d) Using (c), conclude that $U \cap V$ has at most two connected components for any two charts (φ, U) and (ψ, V) .
- 3. Assume $q: X \to Y$ is a surjective continuous function. Prove that if q is an open function then q is a quotient map.¹
- 4. Let X be a T_4 space. Prove that if A is closed in X then (A, \mathscr{T}_A) is T_4 .
- 5. Let X be a T_3 space and $A \subset X$ closed. Prove that the quotient space X/A is Hausdorff.

¹This result holds if q is, instead, a closed function.