This assignment is about the Cantor Set, a remarkable subset of $[0,1]$. Named for the mathematician Georg Cantor, this set is a fractal (a type of self-similar object) and possesses many strange properties. Solutions for the problems on the following page are due August 24, 2016. Unlike standard assignments, groups of up to 3 people may submit a single assignment for credit. For each problem, list who worked on that problem. (This will not affect scores.)

Description 1: To construct the Cantor set, we need to apply a recursive process to the interval $[0,1]$. Let $F_{0}=[0,1]$. We obtain F_{1} by removing the middle third of closed line segments:

$$
F_{1}=[0,1] \backslash\left(\frac{1}{3}, \frac{2}{3}\right)=\left[0, \frac{1}{3}\right] \cup\left[\frac{2}{3}, 1\right] .
$$

Now we repeat this process to obtain F_{2} :

$$
F_{2}=F_{1} \backslash\left(\left(\frac{1}{9}, \frac{2}{9}\right) \cup\left(\frac{7}{9}, \frac{8}{9}\right)\right)=\left[0, \frac{1}{9}\right] \cup\left[\frac{2}{9}, \frac{1}{3}\right] \cup\left[\frac{2}{3}, \frac{7}{9}\right] \cup\left[\frac{8}{9}, 1\right] .
$$

Repeating this, we get a collection $\left\{F_{n}\right\}_{n=0}^{\infty}$ of sets. Visually, F_{0} through F_{4} appear as follows:

Finally, the Cantor set is defined to be the intersection of these sets: $C=\bigcap_{n=0}^{\infty} F_{n}$.
We know that $C \neq \varnothing$ because the endpoints of the removed intervals remain. That is, points such as $\frac{1}{3} \in C$ since, after the interval $\left(\frac{1}{3}, \frac{2}{3}\right)$ is removed, $\frac{1}{3}$ is in the top third of an interval forever after.

However, not every point left over is the endpoint of some interval. For instance, $\frac{1}{4} \in C$ since $\frac{1}{4}$ alternates between being in the bottom third and the top third of intervals.

Description 2: Alternatively, we may think of the Cantor set as the points in $[0,1]$ whose ternary expansion has no ones. Every number in $[0,1]$ can be written as $0 . x_{1} x_{2} x_{3} \ldots$ where $x_{i} \in\{0,1,2\}$. This corresponds to "choosing" the left (0), middle (1), or right (2) third of the interval specified by the previous choice. So $\frac{1}{4}=0.020202 \ldots \in C$.

For instance, $x=0.2 x_{2} x_{3} \ldots$ means that $x \in\left[\frac{2}{3}, 1\right]$. Further specifying that $x_{2}=0$ forces $x=$ $0.20 x_{3} \ldots$ to be in the interval $\left[\frac{2}{3}, \frac{7}{9}\right]$.

In what follows, either description of C may be used. Some properties are most easily proved using one definition instead of the other.

Prove at least four of the following (extra credit for each additional solution):

1. C is closed. Conclude that C is compact.
2. Int $C=\varnothing$. Conclude that C is nowhere dense (i.e., $\operatorname{Int} \bar{C}=\varnothing$).
3. Every point of C is a limit point of C. Conclude that no point of C is an isolated point.
4. The set E, consisting of endpoints of the intervals removed to obtain C, is countable. For instance, $\frac{1}{3} \in E$ since $\left(\frac{1}{3}, \frac{2}{3}\right)$ was removed in the first step.
5. C is uncountable.
6. The sum of the lengths of intervals removed from $[0,1]$ is equal to 1 . (For an interval (a, b), the length $\ell((a, b))=b-a$.)
7. C is totally disconnected (i.e., the only connected components are singleton sets).

These are not a complete list of the interesting (and seemingly contradictory) properties of the Cantor set:

- Using C, one can define the Cantor function (also known as the Devil's Staircase), a nondecreasing surjective continuous function $f:[0,1] \rightarrow[0,1]$ whose derivative is 0 (wherever $f^{\prime}(x)$ exists).
- C is a complete metric space.
- C is an example of an uncountable set with Lebesgue measure 0 .
- For real numbers, we can "sum" sets: $A+B=\{a+b \mid a \in A, b \in B\}$. The surprising fact is that $C+C=[0,2]$. (Yes, the entire interval.)
- Above we proved that C is: totally disconnected, perfect (closed with no isolated points), compact, and (being a subset of $[0,1]$) a metric space. Any nonempty set with these properties is necessarily homeomorphic to C.

