MATH 54 - TOPOLOGY SUMMER 2015 TAKE-HOME EXAMINATION

ELEMENTS OF SOLUTION

Problem 1

The purpose of this problem is to study the connected components of \mathbb{R}^{ω} in various topologies. In what follows, B and U respectively denote the sets of bounded and unbounded sequences. Note that $\mathbb{R}^{\omega} = B \sqcup U$.

The sequence whose terms are constantly equal to 0 is denoted by **0**. The connected component of x is denoted by C_x .

Finally, if x is an element in \mathbb{R}^{ω} and A a subset of \mathbb{R}^{ω} , we denote by x + A the set of A-translates of x, that is

$$x + A = \{x + a , a \in A\}$$

1. Determine the connected components of \mathbb{R}^{ω} in the product topology.

For x, y in \mathbb{R}^{ω} , the function

$$s_{x,y}: t \longmapsto (1-t)x + ty$$

is continuous from [0, 1] to \mathbb{R}^{ω} equipped with the box topology, because each component map s_{x_n,y_n} is polynomial hence continuous from [0, 1] to \mathbb{R} . Since each $s_{x,y}(t)$ is a realvalued sequence, it follows that \mathbb{R}^{ω} is convex, hence (path) connected.

2. Consider \mathbb{R}^{ω} equipped with the uniform topology.

(a) Prove that x is in the same connected component as 0 if and only if x is bounded.

We know that B is closed in \mathbb{R}^{ω} for the uniform topology. A similar argument shows that U is also closed, so that they constitute a separation of \mathbb{R}^{ω} in this topology. Therefore, since the zero sequence is bounded, we see that $C_0 \subset B$. Furthermore, for $x \in B$, the function $s_{0,x}$ satisfies

$$|s_{\mathbf{0},x}(t)| \le t \cdot \sup_{n \ge 1} |x_n|$$

for every $t \in [0, 1]$. It follows that it is continuous and that every $s_{0,x}(t)$ is bounded so *B* is connected in the uniform topology. Therefore, $C_0 = B$.

(b) Deduce a necessary and sufficient condition for x and y in \mathbb{R}^{ω} to lie in the same connected component for the uniform topology.

For x fixed in \mathbb{R}^{ω} , the map $y \mapsto y - x$ is a homeomorphism from \mathbb{R}^{ω} onto itself, which sends x to **0**. It follows that x and y are in the same connected component if and only if $x - y \in C_0$. In other words, $C_x = x + B$.

3. Consider \mathbb{R}^{ω} equipped with the box topology.

(a) Let $x, y \in \mathbb{R}^{\omega}$ be such that $x - y \in \mathbb{R}^{\omega} \setminus \mathbb{R}^{\infty}$. Prove that there exists a homeomorphism $\varphi : \mathbb{R}^{\omega} \longrightarrow \mathbb{R}^{\omega}$ such that $(\varphi(x)_n)_{n \in \mathbb{Z}_+}$ is a bounded sequence and $(\varphi(y)_n)_{n \in \mathbb{Z}_+}$ is unbounded.

Let us prove the following:

Lemma. Let $(\alpha_n)_{n \in \mathbb{Z}_+}$ and $(\beta_n)_{n \in \mathbb{Z}_+}$ be fixed sequences of real numbers such that $\alpha_n \neq 0$ for all n. Then the map

$$\varphi: \begin{array}{ccc} \mathbb{R}^{\omega} & \longrightarrow & \mathbb{R}^{\omega} \\ (u_n)_{n \in \mathbb{Z}_+} & \longmapsto & (\alpha_n u_n + \beta_n)_{n \in \mathbb{Z}_+} \end{array}$$

is a homeomorphism in the box topology.

4

Proof. Since φ is bijective with inverse $(u_n)_{n \in \mathbb{Z}_+} \mapsto \left(\frac{u_n}{\alpha_n} - \beta_n\right)_{n \in \mathbb{Z}_+}$ it suffices to prove that every map from \mathbb{R}^{ω} to itself with (non-constant) affine components is continuous. Let $W = \prod_{n \ge 1} (s_n, t_n)$ be a basis element for the box topology. Then,

$$\varphi^{-1}(W) = \prod_{n \ge 1} \left(\frac{s_n}{\alpha_n} - \beta_n, \frac{t_n}{\alpha_n} - \beta_n \right)$$

is also an open box, hence open. Therefore φ is continuous.

Now, with x and y fixed in \mathbb{R}^{ω} such that $x - y \notin \mathbb{R}^{\omega} \setminus \mathbb{R}^{\infty}$, consider the map φ defined by

$$\varphi(u)_n = \begin{cases} u_n - x_n & \text{if } x_n = y_n \\ e^n \cdot \frac{u_n - x_n}{y_n - x_n} & \text{if } x_n \neq y_n \end{cases}$$

for $u \in \mathbb{R}^{\omega}$. Then φ is a homeomorphism of \mathbb{R}^{ω} by the lemma and $\varphi(x) = \mathbf{0} \in B$ while $\varphi(y)$ has an exponentially growing subsequence, hence $\varphi(y) \in U$.

(b) Deduce a necessary and sufficient condition for x and y in \mathbb{R}^{ω} to lie in the same connected component for the box topology.

Let $x, y \in \mathbb{R}^{\omega}$. Since $B \sqcup U$ is a separation of \mathbb{R}^{ω} in the box topology, any homeomorphism φ of \mathbb{R}^{ω} must satisfy $\varphi(C_x) \subset B$ or $\varphi(C_x) \subset U$. By the previous question, if follows that $y \in C_x$ implies $x - y \in \mathbb{R}^{\infty}$. In other words, $C_x \subset x + \mathbb{R}^{\infty}$.

The converse inclusion follows from a convexity argument. Assume that $x - y \in \mathbb{R}^{\infty}$. Then, $s_{x,y}(t) = x + t(y - x) \in x + \mathbb{R}^{\infty}$ for every $t \in [0, 1]$.

Let us prove that this map is continuous between \mathbb{R} and \mathbb{R}^{ω} equipped with the box topology. Let $W = \prod_{n \ge 1} I_n$ with I_n an open interval of \mathbb{R} for every $n \in \mathbb{Z}_+$. Then, for every n, the set $J_n = \{t \in [0, 1], x_n + t(y_n - x_n)\}$ is

- empty or equal to [0,1] if $x_n = y_n$;

- an open interval of [0,1] if $x_n \neq y_n$.

Since the latter occurs only for finitely many values of n, the inverse image of W under $s_{x,y}$, which is $\bigcap_{n\geq 1} I_n$ is either empty or a finite intersection of open sets, hence open. This proves that $s_{x,y}$ is a continuous path, so that $x + \mathbb{R}^{\infty}$ is path connected, hence equal to C_x .

Problem 2

Let F be a functor between categories C and C'. A functor $G : C' \longrightarrow C$ is said to be a *left adjoint* for F if there is a natural isomorphism

$$\operatorname{Hom}_{\mathcal{C}}(G(X), Y) \cong \operatorname{Hom}_{\mathcal{C}'}(X, F(Y))$$

for all objects $X \in \underline{C}'$ and $Y \in \underline{C}$. Similarly, G is called a *right adjoint* for F if there is a natural isomorphism

$$\operatorname{Hom}_{\mathcal{C}}(X, G(Y)) \cong \operatorname{Hom}_{\mathcal{C}'}(F(X), Y)$$

for all objects $X \in \underline{\mathcal{C}}$ and $Y \in \underline{\mathcal{C}}'$.

Recall that the forgetful functor $\mathbb{F} : \text{Top} \longrightarrow \text{Set}$ is defined by

- $\mathbb{F}((X, \mathcal{T})) = X$ for any set X equipped with a topology \mathcal{T} ;

- $\mathbb{F}(f) = f$ for any continuous map $f: X \longrightarrow Y$.

If X is a set, let $\mathbb{G}(X)$ denote the topological space obtained by endowing X with the trivial topology $\mathcal{T}_{\text{triv.}} = \{X, \emptyset\}$:

$$\mathbb{G}(X) = (X, \mathcal{T}_{\text{triv.}}).$$

If f is a map between sets, define in addition $\mathbb{G}(f) = f$.

This problem is a reformulation in the language of categories of the following basic properties of the trivial and discrete topologies:

(C1) If (X, \mathcal{T}) is a topological space, then any map $(X, \mathcal{T}) \longrightarrow (Y, \mathcal{T}_{triv.})$ is continuous.

(C2) If (Y, \mathcal{T}) is a topological space, then any map $(X, \mathcal{T}_{\text{disc.}}) \longrightarrow (Y, \mathcal{T})$ is continuous.

1. Verify that \mathbb{G} is a functor.

At the level of objects, \mathbb{G} sends sets to topological spaces. To verify functoriality, it suffices to check that if f is a morphism in **Set**, then $\mathbb{G}(f)$ is a morphism in **Top** and compatibility with compositions in each category. Let X and Y be objects in <u>Set</u>, and $f \in \text{Hom}(X, Y)$ that is, f is a map between sets X and Y. Then $\mathbb{G}(f) = f$ by definition and the condition

$$\mathbb{G}(f) \in \operatorname{Hom}(\mathbb{G}(X), \mathbb{G}(Y))$$

is equivalent to f being continuous between $(X, \mathcal{T}_{triv.})$ and $(Y, \mathcal{T}_{triv.})$, which follows from (C1). The composition relation is immediate as $\mathbb{G}(gf) = gf = \mathbb{G}(g)\mathbb{G}(f)$. Finally, $\mathbb{G}(\mathrm{Id}_X) = \{x \mapsto x\} = \mathrm{Id}_{\mathbb{G}(X)}$.

2. Prove that \mathbb{G} is a right adjoint to \mathbb{F} .

To prove that \mathbb{G} is a right adjoint to \mathbb{F} , we need to compare

 $\operatorname{Hom}_{\operatorname{Top}}((X,\mathcal{T}),\mathbb{G}(Y))$

with

$$\operatorname{Hom}_{\operatorname{Set}}(\mathbb{F}((X,\mathcal{T})),Y)$$

for any topological space (X, \mathcal{T}) and every set Y. By definition, $\operatorname{Hom}_{\operatorname{Top}}((X, \mathcal{T}), \mathbb{G}(Y))$ is the set of continuous maps from (X, \mathcal{T}) to $(Y, \mathcal{T}_{\operatorname{triv.}})$.

On the other hand, $\operatorname{Hom}_{\operatorname{Set}}(\mathbb{F}((X, \mathcal{T})), Y)$ consists of all maps from X to Y. Therefore, it follows from (C1) that every element of $\operatorname{Hom}_{\operatorname{Set}}(\mathbb{F}((X, \mathcal{T})), Y)$ can be seen as an element of $\operatorname{Hom}_{\operatorname{Top}}((X, \mathcal{T}), \mathbb{G}(Y))$. In other words, the natural isomorphism realizing the adjunction is the map

$$\operatorname{Hom}_{\operatorname{\mathbf{Set}}}(\mathbb{F}\left((X,\mathcal{T})\right),Y) \longrightarrow \operatorname{Hom}_{\operatorname{\mathbf{Top}}}((X,\mathcal{T}),\mathbb{G}(Y))$$
$$f \longmapsto f$$

3. Find a left adjoint for \mathbb{F} .

Similar arguments and (C2) imply that \mathbb{H} defined on **Set** by $\mathbb{H}(X) = (X, \mathcal{T}_{\text{disc.}})$ and $\mathbb{H}(f) = f$ is a functorial and a left adjoint for \mathbb{F} .