MATH 54 - TOPOLOGY SUMMER 2015 TAKE-HOME EXAMINATION

DUE MONDAY AUGUST 17

This is an individual assignment. You may use the text and class notes but no other source or outside help.

Problem 1

- 1. Determine the connected components of \mathbb{R}^{ω} in the product topology.
- **2.** Consider \mathbb{R}^{ω} equipped with the uniform topology.
 - (a) Prove that x is in the same connected component as **0** if and only if x is bounded.
 - (b) Deduce a necessary and sufficient condition for x and y in \mathbb{R}^{ω} to lie in the same connected component for the uniform topology.
- **3.** Consider \mathbb{R}^{ω} equipped with the box topology.
 - (a) Let $x, y \in \mathbb{R}^{\omega}$ be such that $x y \in \mathbb{R}^{\omega} \setminus \mathbb{R}^{\infty}$. Prove that there exists a homeomorphism

 $\varphi: \mathbb{R}^{\omega} \longrightarrow \mathbb{R}^{\omega}$

such that $(\varphi(x)_n)_{n\in\mathbb{Z}_+}$ is a bounded sequence and $(\varphi(y)_n)_{n\in\mathbb{Z}_+}$ is unbounded.

Hint: given $u \in \mathbb{R}^{\omega}$ *, it might be helpful to consider the sequence* v *defined by*

$$v_n = \begin{cases} u_n - x_n & \text{if } x_n = y_n \\ \frac{u_n - x_n}{y_n - x_n} & \text{if } x_n \neq y_n \end{cases}$$

(b) Deduce a necessary and sufficient condition for x and y in \mathbb{R}^{ω} to lie in the same connected component for the box topology.

Problem 2

Let F be a functor between categories \mathcal{C} and \mathcal{C}' . A functor $G : \mathcal{C}' \longrightarrow \mathcal{C}$ is said to be a *left adjoint* for F if there is a natural isomorphism

$$\operatorname{Hom}_{\mathcal{C}}(G(X), Y) \cong \operatorname{Hom}_{\mathcal{C}'}(X, F(Y))$$

for all objects $X \in \underline{C}'$ and $Y \in \underline{C}$. Similarly, G is called a *right adjoint* for F if there is a natural isomorphism

$$\operatorname{Hom}_{\mathcal{C}}(X, G(Y)) \cong \operatorname{Hom}_{\mathcal{C}'}(F(X), Y)$$

for all objects $X \in \underline{\mathcal{C}}$ and $Y \in \underline{\mathcal{C}}'$.

Recall that the forgetful functor \mathbb{F} : **Top** \longrightarrow **Set** is defined by

- $\mathbb{F}((X, \mathcal{T})) = X$ for any set X equipped with a topology \mathcal{T} ;

- $\mathbb{F}(f) = f$ for any continuous map $f : X \longrightarrow Y$.

If X is a set, let $\mathbb{G}(X)$ denote the topological space obtained by endowing X with the trivial topology $\mathcal{T}_{\text{triv.}} = \{X, \emptyset\}$:

$$\mathbb{G}(X) = (X, \mathcal{T}_{\text{triv.}}).$$

If f is a map between sets, define in addition $\mathbb{G}(f) = f$.

- **1.** Verify that \mathbb{G} is a functor.
- **2.** Prove that \mathbb{G} is a right adjoint to \mathbb{F} .
- **3.** Find a left adjoint for \mathbb{F} .