MATH 54 - TOPOLOGY SUMMER 2015 MIDTERM 2

ELEMENTS OF SOLUTION

Problem 1

1. Show that a topological space is T_1 if and only if for any pair of distinct points, each has a neighborhood that does not contain the other.

Let $x \neq y$ be elements of X, assumed T₁. Then $\{x\}$ is closed so $X \setminus \{x\}$ is a neighborhood of y that does not contain x. Similarly, $X \setminus \{y\}$ is a neighborhood of x that does not contain y. Conversely, assume that distinct points have neighborhoods that does not contain the other and let $x \in X$. Then if $y \neq x$, there is a neighborhood of y that does not contain x so $X \setminus \{x\}$ is open hence $\{x\}$ is closed.

2. Determine the interior and the boundary of the set

$$\Xi = \left\{ (x, y) \in \mathbb{R}^2 , \ 0 \le y < x^2 + 1 \right\}$$

where \mathbb{R}^2 is equipped with its ordinary Euclidean topology.

$$\mathring{\Xi} = \left\{ (x, y) \in \mathbb{R}^2 , \ 0 < y < x^2 + 1 \right\}$$

$$\partial \Xi = \{ y = 0 \} \cup \{ y = x^2 + 1 \}$$
Problem 2

Let E be a set with a metric d and \mathcal{T}_d the corresponding metric topology.

1. Prove that the map $d: (E, \mathcal{T}_d) \times (E, \mathcal{T}_d) \longrightarrow \mathbb{R}$ is continuous.

Let (a, b) be an arbitrary basis element for the topology on \mathbb{R} , with b > 0, so that $d^{-1}((a, b))$ is not empty. Let $(x, y) \in d^{-1}((a, b))$ and d = d(x, y). Then, by the triangle inequality,

$$(p,q) \in B(x, \frac{b-d}{2}) \times B(y, \frac{b-d}{2}) \Rightarrow d(p,q) < b.$$

The triangle inequality also implies that $d(p,q) \ge d(x,y) - d(x,p) - d(v,y)$ so

$$(p,q) \in B(x, \frac{d-a}{2}) \times B(y, \frac{d-a}{2}) \Rightarrow a < d(p,q).$$

It follows that $B(x,r) \times B(y,r)$ with $r = \min\left\{\frac{b-d}{2}, \frac{d-a}{2}\right\}$ is a neighborhood of (x,y) contained in $d^{-1}((a,b))$, which is therefore open.

2. Let \mathcal{T} be a topology on E, such that $d: (E, \mathcal{T}) \times (E, \mathcal{T}) \longrightarrow \mathbb{R}$ is continuous. Prove that \mathcal{T} is finer than \mathcal{T}_d .

It suffices to prove that every ball B(x, r) is open for \mathcal{T} . If $y \in B(x, r)$, then (x, y) belongs to $d^{-1}((-\infty, r))$, assumed open, so there exists a basis element $U \times V$ in $\mathcal{T} \times \mathcal{T}$ such that

$$(x,y) \in U \times V \subset d^{-1}((-\infty,r)).$$

In particular, V is a neighborhood of y. Moreover, if $z \in V$, then $(x, z) \in U \times V \subset d^{-1}((-\infty, r))$ so d(x, z) < r, which proves that $V \subset B(x, r)$, hence $B(x, r) \in \mathcal{T}$.

We have proved that the metric topology is the coarsest topology on E making d continuous.

Problem 3

We prove that the box topology on \mathbb{R}^{ω} is not metrizable.

1. Recall the definition of the box topology on \mathbb{R}^{ω} .

It is the topology generated by the basis $\{\prod_{n\geq 1} U_n, U_n \text{ open in } \mathbb{R}\}$.

Denote by 0 the sequence constantly equal to 0 and let

$$P = (0, +\infty)^{\omega} = \prod_{n \ge 1} (0, +\infty)$$

be the subset of positive sequences.

2. Verify that 0 belongs to \bar{P} .

Let $U = \prod_{n \ge 1} U_n$ be a neighborhood of **0**. Then U_n is a neighborhood of 0 in \mathbb{R} for every n. Therefore, U_n contains an interval (a_n, b_n) with $a_n < 0 < b_n$ for every n so the sequence $(b_n)_{n \ge 1}$ is an element of $U \cap P$. Every neighborhood of **0** meets P so $\mathbf{0} \in \overline{P}$.

3. Prove that no sequence $(p_n)_{n\geq 1} \in P^{\omega}$ converges to 0 in the box topology.

Let $({}^{n}u)_{n\geq 1}$ be a sequence of elements of P and consider the open box

$$\mathfrak{B} = \prod_{n \ge 1} (-^n u_n, {^n u_n}).$$

Then $\mathbf{0} \in \mathfrak{B}$, but no ^{*n*}*u* belongs to \mathfrak{B} , since the *n*th term of ^{*n*}*u* lies outside the *n*th interval in the product defining \mathfrak{B} .

4. Conclude.

In a metrizable space, closure points of are limits of sequences. Here, **0** is a closure point of P that is the limit of no sequence of elements of P. Therefore, the box topology on \mathbb{R}^{ω} is not metrizable.

Problem 4

- 1. Let X be a set.
 - (a) Recall the definition of the uniform topology on \mathbb{R}^X .

It is the metric topology associated with $\bar{\rho}(f,g) = \sup_{x \in X} \min\{|f(x) - g(x)|, 1\}.$

(b) Recall the definition of uniform convergence for a sequence in \mathbb{R}^X .

The sequence $(f_n)_{n\geq 1}$ converges uniformly to f in \mathbb{R}^X if

$$\forall \varepsilon > 0 , \exists N_{\varepsilon} \in \mathbb{Z}_{+} , \forall n \ge N_{\varepsilon} , \forall x \in X , |f_{n}(x) - f(x)| < \varepsilon.$$

2. Prove that a sequence in \mathbb{R}^X converges uniformly if and only if it converges for \mathcal{T}_{∞} .

Assume that f_n converges uniformly to f and let $0 < \varepsilon < 1$. Then for $n \ge N_{\frac{\varepsilon}{2}}$ and all $x \in X$,

$$\min\{|f(x) - g(x)|, 1\} = |f_n(x) - f(x)| < \frac{\varepsilon}{2},$$

 \mathbf{SO}

$$\bar{\rho}(f_n, f) = \sup_{x \in X} \min\{|f_n(x) - f(x)|, 1\} \le \frac{\varepsilon}{2} < \varepsilon,$$

which means that f_n converges to f in the uniform topology.

Conversely, assume that $\lim_{n\to\infty} \bar{\rho}(f_n, f) = 0$ and let $0 < \varepsilon < 1$. For *n* large enough, $\sup_{x\in X}\{|f_n(x) - f(x)| < \varepsilon$, so that

$$|f_n(x) - f(x)| < \varepsilon$$
 for all $x \in X$,

so f_n converges uniformly to f.

Problem 5

Consider the space \mathbb{R}^{ω} of real-valued sequences, equipped with the uniform topology.

1. Prove that the subset B of bounded sequences is closed.

It suffices to prove that a uniform limit of bounded sequences is bounded. Let $({}^{n}u)_{n\geq 1}$ be such that each $({}^{n}u_{k})_{k\geq 1}$ is bounded:

$$|^{n}u_{k}| \leq M_{n}$$
 for all $k \geq 1$

and assume that $\lim_{n\to\infty} u = u$, uniformly. Then there exists an integer n_0 such that

$$(\star) \qquad \forall n \ge n_0 , \ \sup_{k \ge 1} |^n u_k - u_k| < 1.$$

If u were unbounded, it would admit a subsequence $u_{k_{\ell}}$ such that $\lim_{\ell \to \infty} |u_{k_{\ell}}| = +\infty$. Since $n_0 u$ is bounded by M_{n_0} , this would imply that

$$\lim_{\ell \to \infty} |^{n_0} u_{k_\ell} - u_{k_\ell}| = +\infty,$$

which contradicts (\star) . Therefore, u must be bounded and B contains all its limit points.

2. Let \mathbb{R}^{∞} denote the subset of sequences with finitely many non-zero terms. Determine the closure of \mathbb{R}^{∞} in \mathbb{R}^{ω} for the uniform topology.

We will prove that $\overline{\mathbb{R}^{\infty}} = c_0(\mathbb{Z}_+)$, the set of sequences that converge to 0.

Let $({}^{n}u)_{n\geq 1}$ be a uniformly convergent sequence of elements of \mathbb{R}^{∞} and $u = \lim_{n\to\infty} {}^{n}u$. If u does not converge to 0, there exists some $\eta > 0$ such that

$$|u_k| > r$$

for arbitrarily large values of k. It follows that, for any $n \ge 1$,

$$|^{n}u - u_{k}| = |u_{k}| > \eta$$
 for some k

since ${}^{n}u$ has only finitely many non-zero terms. This implies that $\sup_{k\geq 1} |{}^{n}u_{k} - u_{k}| \geq \eta$ for all $n \geq 1$, which contradicts the uniform convergence of $({}^{n}u)_{n\geq 1}$.

Conversely, any sequence u in $c_0(\mathbb{Z}_+)$ is the uniform limit of its truncations: let ⁿu be the sequence defined by

$${}^{n}u_{k} = \begin{cases} u_{k} & \text{if } k \leq n \\ 0 & \text{if } k > n \end{cases}.$$

Then, ${}^{n}u \in c_0(\mathbb{Z}_+)$ and

$$\sup_{k \ge 1} |^n u_k - u_k| = \sup_{k > n} |u_k| \underset{n \to \infty}{\longrightarrow} 0$$

so ${}^{n}u$ converges uniformly to u.