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ELEMENTS OF SOLUTION

Problem 1

1. Show that a topological space is T1 if and only if for any pair of distinct
points, each has a neighborhood that does not contain the other.

Let x 6= y be elements of X, assumed T1. Then {x} is closed so X \{x} is a neighborhood
of y that does not contain x. Similarly, X \ {y} is a neighborhood of x that does not
contain y. Conversely, assume that distinct points have neighborhoods that does not
contain the other and let x ∈ X. Then if y 6= x, there is a neighborhood of y that does
not contain x so X \ {x} is open hence {x} is closed.

2. Determine the interior and the boundary of the set

Ξ =
{

(x, y) ∈ R2 , 0 ≤ y < x2 + 1
}

where R2 is equipped with its ordinary Euclidean topology.

Ξ̊ =
{

(x, y) ∈ R2 , 0 < y < x2 + 1
}

∂Ξ = {y = 0} ∪ {y = x2 + 1}

Problem 2

Let E be a set with a metric d and Td the corresponding metric topology.

1. Prove that the map d : (E, Td)× (E, Td) −→ R is continuous.

Let (a, b) be an arbitrary basis element for the topology on R, with b > 0, so that
d−1((a, b)) is not empty. Let (x, y) ∈ d−1((a, b)) and d = d(x, y). Then, by the triangle
inequality,

(p, q) ∈ B(x,
b− d

2
)×B(y,

b− d
2

)⇒ d(p, q) < b.

The triangle inequality also implies that d(p, q) ≥ d(x, y)− d(x, p)− d(v, y) so

(p, q) ∈ B(x,
d− a

2
)×B(y,

d− a
2

)⇒ a < d(p, q).

It follows that B(x, r) × B(y, r) with r = min
{

b−d
2
, d−a

2

}
is a neighborhood of (x, y)

contained in d−1((a, b)), which is therefore open.



2. Let T be a topology on E, such that d : (E, T )× (E, T ) −→ R is continuous.
Prove that T is finer than Td.

It suffices to prove that every ball B(x, r) is open for T . If y ∈ B(x, r), then (x, y) belongs
to d−1((−∞, r)), assumed open, so there exists a basis element U ×V in T ×T such that

(x, y) ∈ U × V ⊂ d−1((−∞, r)).
In particular, V is a neighborhood of y. Moreover, if z ∈ V , then (x, z) ∈ U × V ⊂
d−1((−∞, r)) so d(x, z) < r, which proves that V ⊂ B(x, r), hence B(x, r) ∈ T .

We have proved that the metric topology is the coarsest topology on E making d contin-
uous.

Problem 3

We prove that the box topology on Rω is not metrizable.

1. Recall the definition of the box topology on Rω.

It is the topology generated by the basis
{∏

n≥1 Un , Un open in R
}

.

Denote by 0 the sequence constantly equal to 0 and let

P = (0,+∞)ω =
∏
n≥1

(0,+∞)

be the subset of positive sequences.

2. Verify that 0 belongs to P̄ .

Let U =
∏

n≥1 Un be a neighborhood of 0. Then Un is a neigborhood of 0 in R for every n.
Therefore, Un contains an interval (an, bn) with an < 0 < bn for every n so the sequence
(bn)n≥1 is an element of U ∩ P . Every neighborhood of 0 meets P so 0 ∈ P̄ .

3. Prove that no sequence (pn)n≥1 ∈ P ω converges to 0 in the box topology.

Let (nu)n≥1 be a sequence of elements of P and consider the open box

B =
∏
n≥1

(−nun,
nun).

Then 0 ∈ B, but no nu belongs to B, since the nth term of nu lies outside the nth interval
in the product defining B.

4. Conclude.

In a metrizable space, closure points of are limits of sequences. Here, 0 is a closure point
of P that is the limit of no sequence of elements of P . Therefore, the box topology on Rω

is not metrizable.



Problem 4

1. Let X be a set.

(a) Recall the definition of the uniform topology on RX .

It is the metric topology associated with ρ̄(f, g) = supx∈X min{|f(x)− g(x)|, 1}.

(b) Recall the definition of uniform convergence for a sequence in RX.

The sequence (fn)n≥1 converges uniformly to f in RX if

∀ε > 0 , ∃Nε ∈ Z+ , ∀n ≥ Nε , ∀x ∈ X , |fn(x)− f(x)| < ε.

2. Prove that a sequence in RX converges uniformly if and only if it converges
for T∞.

Assume that fn converges uniformly to f and let 0 < ε < 1. Then for n ≥ N ε
2

and all
x ∈ X,

min{|f(x)− g(x)|, 1} = |fn(x)− f(x)| < ε

2
,

so
ρ̄(fn, f) = sup

x∈X
min{|fn(x)− f(x)|, 1} ≤ ε

2
< ε,

which means that fn converges to f in the uniform topology.

Conversely, assume that limn→∞ ρ̄(fn, f) = 0 and let 0 < ε < 1. For n large enough,
supx∈X{|fn(x)− f(x)| < ε, so that

|fn(x)− f(x)| < ε for all x ∈ X,
so fn converges uniformly to f .

Problem 5

Consider the space Rω of real-valued sequences, equipped with the uniform
topology.

1. Prove that the subset B of bounded sequences is closed.

It suffices to prove that a uniform limit of bounded sequences is bounded. Let (nu)n≥1 be
such that each (nuk)k≥1 is bounded:

|nuk| ≤Mn for all k ≥ 1

and assume that limn→∞
nu = u, uniformly. Then there exists an integer n0 such that

(?) ∀n ≥ n0 , sup
k≥1
|nuk − uk| < 1.

If u were unbounded, it would admit a subsequence uk` such that lim`→∞ |uk` | = +∞.
Since n0u is bounded by Mn0 , this would imply that

lim
`→∞
|n0uk` − uk` | = +∞,

which contradicts (?). Therefore, u must be bounded and B contains all its limit points.



2. Let R∞ denote the subset of sequences with finitely many non-zero terms.
Determine the closure of R∞ in Rω for the uniform topology.

We will prove that R∞ = c0(Z+), the set of sequences that converge to 0.

Let (nu)n≥1 be a uniformly convergent sequence of elements of R∞ and u = limn→∞
nu.

If u does not converge to 0, there exists some η > 0 such that

|uk| > η

for arbitrarily large values of k. It follows that, for any n ≥ 1,

|nu− uk| = |uk| > η for some k

since nu has only finitely many non-zero terms. This implies that supk≥1 |nuk − uk| ≥ η
for all n ≥ 1, which contradicts the uniform convergence of (nu)n≥1.

Conversely, any sequence u in c0(Z+) is the uniform limit of its truncations: let nu be the
sequence defined by

nuk =

{
uk if k ≤ n
0 if k > n

.

Then, nu ∈ c0(Z+) and
sup
k≥1
|nuk − uk| = sup

k>n
|uk| −→

n→∞
0

so nu converges uniformly to u.


