# MATH 54-TOPOLOGY <br> SUMMER 2015 <br> MIDTERM 1 

DURATION: 1 HOUR 30 MINUTES

This exam consists of 4 independent problems. Treat them in the order of your choosing, starting each problem on a new page.

Every claim you make must be fully justified or quoted as a result from the textbook.

## Problem 1

Let $\mathcal{T}$ be the family of subsets $\mathcal{U}$ of $\mathbb{Z}_{+}$satisfying the following property: If $n$ is in $\mathcal{U}$, then any divisor of $n$ belongs to $\mathcal{U}$.

1. Give two different examples of elements of $\mathcal{T}$ containing 24 (not including $\mathbb{Z}_{+}$).
2. Verify that $\mathcal{T}$ is a topology on $\mathbb{Z}_{+}$.
3. Is $\mathcal{T}$ the discrete topology?

## Problem 2

Let $(E, d)$ be a metric space.

1. Recall the definition of the metric topology and prove that open balls form a basis.
2. Assume that $\rho$ is a second metric on $E$ such that, for every $x, y \in E$,

$$
\frac{1}{2} d(x, y) \leq \rho(x, y) \leq 2 d(x, y)
$$

Compare the topologies generated by $d$ and $\rho$.

## Problem 3

Let $\mathcal{T}_{1}$ and $\mathcal{T}_{2}$ be topologies on a set $X$.

1. Verify that $\mathcal{T}_{1} \cup \mathcal{T}_{2}$ is a subbasis for a topology.

From now on, $\mathcal{T}_{1} \vee \mathcal{T}_{2}$ denotes the topology generated by $\mathcal{T}_{1} \cup \mathcal{T}_{2}$.
2. Describe $\mathcal{T}_{1} \vee \mathcal{T}_{2}$ when $\mathcal{T}_{1}$ is coarser than $\mathcal{T}_{2}$.
3. Compare $\mathcal{T}_{1} \vee \mathcal{T}_{2}$ with $\mathcal{T}_{1}$ and $\mathcal{T}_{2}$ in general.
4. Let $\mathcal{T}$ be a topology on $X$ that is finer than $\mathcal{T}_{1}$ and $\mathcal{T}_{2}$.

Prove that $\mathcal{T}$ is finer than $\mathcal{T}_{1} \vee \mathcal{T}_{2}$.

## Problem 4

1. Consider the set $Y=[-1,1]$ as a subspace of $\mathbb{R}$. Which of the following sets are open in $Y$ ? Which are open in $\mathbb{R}$ ?

$$
\begin{gathered}
A=\left\{x, \frac{1}{2}<|x|<1\right\} \\
B=\left\{x, \frac{1}{2}<|x| \leq 1\right\} \\
C=\left\{x, \frac{1}{2} \leq|x|<1\right\} \\
D=\left\{x, 0<|x|<1 \text { and } \frac{1}{x} \in \mathbb{Z}_{+}\right\}
\end{gathered}
$$

2. Let $X=\mathbb{R}_{\ell} \times \mathbb{R}_{u}$ where $\mathbb{R}_{\ell}$ denotes the topology with basis consisting of all intervals of the form $[a, b)$ and $\mathbb{R}_{u}$ denotes the topology with basis consisting of all intervals of the form $(c, d]$.
Describe the topology induced on the plane curve $\Gamma$ with equation $y=e^{x}$.
