MATH 54 - TOPOLOGY SUMMER 2015 MIDTERM 1

DURATION: 1 HOUR 30 MINUTES

This exam consists of 4 independent problems. Treat them in the order of your choosing, starting each problem on a new page.

Every claim you make must be fully justified or quoted as a result from the textbook.

Problem 1

Let \mathcal{T} be the family of subsets \mathcal{U} of \mathbb{Z}_+ satisfying the following property: If n is in \mathcal{U} , then any divisor of n belongs to \mathcal{U} .

1. Give two different examples of elements of \mathcal{T} containing 24 (not including \mathbb{Z}_+).

2. Verify that \mathcal{T} is a topology on \mathbb{Z}_+ .

3. Is \mathcal{T} the discrete topology?

Problem 2

Let (E, d) be a metric space.

- 1. Recall the definition of the metric topology and prove that open balls form a basis.
- **2.** Assume that ρ is a second metric on E such that, for every $x, y \in E$,

$$\frac{1}{2}d(x,y) \le \rho(x,y) \le 2d(x,y).$$

Compare the topologies generated by d and ρ .

Problem 3

- Let \mathcal{T}_1 and \mathcal{T}_2 be topologies on a set X.
- 1. Verify that $\mathcal{T}_1 \cup \mathcal{T}_2$ is a subbasis for a topology.

From now on, $\mathcal{T}_1 \vee \mathcal{T}_2$ denotes the topology generated by $\mathcal{T}_1 \cup \mathcal{T}_2$.

- **2.** Describe $\mathcal{T}_1 \vee \mathcal{T}_2$ when \mathcal{T}_1 is coarser than \mathcal{T}_2 .
- **3.** Compare $\mathcal{T}_1 \vee \mathcal{T}_2$ with \mathcal{T}_1 and \mathcal{T}_2 in general.
- **4.** Let \mathcal{T} be a topology on X that is finer than \mathcal{T}_1 and \mathcal{T}_2 . Prove that \mathcal{T} is finer than $\mathcal{T}_1 \vee \mathcal{T}_2$.

PROBLEM 4

1. Consider the set Y = [-1, 1] as a subspace of \mathbb{R} . Which of the following sets are open in Y? Which are open in \mathbb{R} ?

$$A = \left\{ x , \frac{1}{2} < |x| < 1 \right\}$$
$$B = \left\{ x , \frac{1}{2} < |x| \le 1 \right\}$$
$$C = \left\{ x , \frac{1}{2} \le |x| < 1 \right\}$$
$$D = \left\{ x , 0 < |x| < 1 \text{ and } \frac{1}{x} \in \mathbb{Z}_+ \right\}$$

2. Let $X = \mathbb{R}_{\ell} \times \mathbb{R}_{u}$ where \mathbb{R}_{ℓ} denotes the topology with basis consisting of all intervals of the form [a, b) and \mathbb{R}_{u} denotes the topology with basis consisting of all intervals of the form (c, d].

Describe the topology induced on the plane curve Γ with equation $y = e^x$.