
Math 54 Summer 2015
Homework #7: connectedness and compactness - Elements of solution

(1) Let U be an open connected subspace of R2 and a ∈ U .

(a) Prove that the set Γa of points x ∈ U such that there is a path
γ : [0, 1] −→ U with γ(0) = a and γ(1) = x is open and closed in U .

Let x be an element of Γa, connected to a by a path γ, and r > 0 such that
B(x, r) ⊂ U . Then for y ∈ B(x, r), the map γ̃ : [0, 1] −→ U defined by

γ̃(t) =

{
γ(2t) if 0 ≤ t ≤ 1

2
2(1− t)x+ (2t− 1)y if 1

2
≤ t ≤ 1

is a continuous path joining a to y, so B(x, r) ⊂ Γa, which is therefore open.

To prove that it is closed, let x ∈ U be an accumulation point of Γa and r > 0
such that B(x, r) ⊂ U . Since x is an accumulation point, there exists y 6= x
in B(x, r) ∩ Γa. Then, as in the proof that Γa is open, one can concatenate
a path from a to y and the segment from y to x to get a continuous path in
U that connects a to x. It follows that x ∈ Γa, which means that Γa contains
its accumulation points, hence is closed in U .

(b) What can you conclude?

The set of points that can be connected to a by a path is open and closed in U
connected. Since it is not empty (it contains a) it is equal to U , which is there-
fore path connected. In other words connectedness and path connectedness
are equivalent for open subsets of R2.

(2) Let X be a topological space and Y ⊂ X a connected subspace.

(a) Are Y̊ and ∂Y necessarily connected?

The answer is negative in both cases. Let Y1 = L ∪ R ⊂ R2 be the union of
the half plane L = {x ≤ 0} and the half-cone R = {x ≥ 0 , |y| ≤ x}. Then
Y1 is connected because both L and R are, and they intersect at the origin.
On the other hand,

Y̊1 = {x < 0} t {x > 0 , |y| < x}
is disconnected, as the two terms in the union are disjoint and open.

To see that a connected set need not have a connected boundary, it suffices
to consider a closed interval of R. Another example is that of a closed washer
in R2: let Y2 = {1 ≤ x2 + y2 ≤ 4}. It is homeomorphic to the rectangle
[1, 2]× [0, 2π) via polar coordinates, hence connected. However, its boundary
consists of two disjoint circles, closed in R2:

∂Y2 = {x2 + y2 = 1} t {x2 + y2 = 4}
which are closed as inverse images of singletons under a continuous map.



(b) Does the converse hold?

No: in R, consider the union of negative real number and positive rationals

Y3 = (−∞, 0) ∪Q+.

Then Y̊3 = (−∞, 0) and ∂Y3 = [0,+∞] are connected, but Y3 is disconnected
as each rational is alone in its connected component.

(3) Let (E, d) be a metric space.

(a) Prove that every compact subspace of E is closed and bounded.

In a metric spaces1, compact sets are closed [M. Th.26.3]. Moreover, assume
that K is compact in E and that K can be covered by open balls of radius 1.
By compactness, K can be covered by finitely many ball of radius 1, say N .
Then the triangle inequality shows that d(x, y) ≤ 2N , so K is bounded.

(b) Give an example of metric space in which closed bounded sets are
not necessarily compact.

Let X be an infinite set, equipped with the discrete metric. Then X is closed
and bounded for the corresponding metric topology. However, the cover given
by all singletons, which are open, since the topology is discrete, does not have
any finite subcover.

(4) This problem gives concrete descriptions of the Alexandrov compactifications of
some locally compact spaces. The Alexandrov compactification is defined up to
homeomorphism and it follows from the universal property that homeomorphic
spaces have the same compactification.

(a) Prove that the Alexandrov compactification of R is homeomorphic
to the unit circle S1 = {(x, y) ∈ R2 , x2 + y2 = 1}.

Observe that S1 is compact as a closed and bounded subset of R2. Moreover,
S1 \ {(−1, 0)} can be parametrized by the map r : R −→ R2 defined by

r(t) =

(
1− t2

1 + t2
,

2t

1 + t2

)
.

This map is continuous because its components are rational functions with
non-vanishing denominators, and takes values in S1. Its inverse is

(x, y) 7−→ y

x+ 1
,

continuous on S1 \ {(−1, 0)} for the same reason.

We have proved that R ∼= S1 \ {(−1, 0)}, which proves that R̃ ∼= S1.

1This actually holds for Hausdorff spaces in general.



(b) Verify that Z+ ⊂ R is a locally compact Hausdorff space.

Subspaces inherit the Hausdorff property so Z+ is Haudorff because R is.
Moreover, every finite subset of Z+ is compact for the subspace topology,
which is discrete, n ∈ Z+ can be seen in {x}, compact and open.

(c) Prove that the Alexandrov compactification of Z+ is homeomorphic
to
{

1
n
, n ∈ Z+

}
∪ {0}.

Again, observe that
{

1
n
, n ∈ Z+

}
∪ {0} is closed and bounded in R, hence

compact. Moreover, the map n 7−→ 1
n

is a homeomorphism between Z+ and{
1
n
, n ∈ Z+

}
so Z̃+

∼=
{

1
n
, n ∈ Z+

}
∪ {0}.


