Math 54 Summer 2015 Homework #7: connectedness and compactness

- (1) Let U be an open connected subspace of \mathbb{R}^2 and $a \in U$.
 - (a) Prove that the set of points $x \in U$ such that there is a path $\gamma : [0, 1] \longrightarrow U$ with $\gamma(0) = a$ and $\gamma(1) = x$ is open and closed in U.
 - (b) What can you conclude?
- (2) Let X be a topological space and $Y \subset X$ a connected subspace.
 - (a) Are \mathring{Y} and ∂Y necessarily connected?
 - (b) Does the converse hold?
- (3) Let (E, d) be a metric space.
 - (a) Prove that every compact subspace of E is closed and bounded.
 - (b) Give an example of metric space in which closed bounded sets are not necessarily compact.
- (4) (a) Prove that the Alexandrov compactification of ℝ is homeomorphic to the unit circle

$$S^1 = \{(x, y) \in \mathbb{R}^2, x^2 + y^2 = 1\}.$$

- (b) Verify that $\mathbb{Z}_+ \subset \mathbb{R}$ is a locally compact Hausdorff space.
- (c) Prove that the Alexandrov compactification of \mathbb{Z}_+ is homeomorphic to

$$\left\{\frac{1}{n}, n \in \mathbb{Z}_+\right\} \cup \{0\}.$$