
Math 54 Summer 2015
Homework #6: metrizable spaces - Elements of solution

(1) Let ρ̄ be the uniform metric on Rω. For x ∈ Rω and 0 < ε < 1, let

P (x, ε) =
∏
n∈Z+

(xn − ε, xn + ε).

(a) Compare P (x, ε) with Bρ̄(x, ε).

With 0 < ε < 1, the definition of ρ̄ implies that

Bρ̄(x, ε) =

{
y ∈ Rω , sup

n≥1
|xn − yn| < ε

}
.

On the other hand, P (x, ε) = {y ∈ Rω , |xn − yn| < ε for every n ≥ 1} so
the inclusion Bρ̄(x, ε) ⊂ P (x, ε) holds by definition of the supremum. This
inclusion is strict: the sequence y defined by

yn = xn + ε− 1

n
belongs to P (x, ε) but ρ̄(x, y) = ε so Bρ̄(x, ε)  P (x, ε).

(b) Is P (x, ε) open in the uniform topology?

No: we prove that P (x, ε) contains no ρ̄-ball centered at the element y intro-
duced above. For any η > 0, the sequence z defined by zn = yn + η

2
satisfies

ρ̄(y, z) < η hence belongs to Bρ̄(y, η).

Observe that xn + ε− yn <
η

2
for n large enough, so

zn − xn = yn +
η

2
− xn

= ε− 1

n
+
η

2
> ε

which means that z /∈ P (x, ε), which is therefore not a neighborhood of y,
hence not open.

(c) Show that Bρ̄(x, ε) =
⋃
δ<ε

P (x, δ).

Let y ∈ P (x, δ) with δ < ε. Then, ρ̄(x, y) ≤ δ < ε so y ∈ Bρ̄(x, ε), which
proves that Bρ̄(x, ε) ⊃ P (x, δ). Since δ was arbitrary, we conclude that

Bρ̄(x, ε) ⊃
⋃
δ<ε

P (x, δ).

Conversely, if y ∈ Bρ̄(x, ε), then y ∈ P (x, δy) with δy = ρ̄(x, y) < ε, so

Bρ̄(x, ε) ⊂
⋃
δ<ε

P (x, δ).



(2) We denote by `2(Z+) the set of square-summable real-valued sequences:

`2(Z+) =

{
x = (xn)n∈Z+ ∈ Rω ,

∑
n≥1

x2
n converges

}
,

equipped with the metric

d(x, y) =

(∑
n≥1

(xn − yn)2

)1/2

.

(a) Compare the metric topology induced by d on `2(Z+) with the re-
strictions of the box and uniform topologies from Rω.

The inclusion Tρ̄ ⊂ Td follows from the observation that Bd(x, r) ⊂ Bρ̄(x, r)
for any x ∈ `2(Z+) and r > 0. Indeed, observe that

|xk − yk|2 ≤
∑
n≥1

|xn − yn|2

for any fixed k, so that ρ̄(x, y) ≤ d(x, y) for any x, y ∈ `2(Z+)1.

This inclusion is strict, as the following example shows. Denote by 0 the
sequence that is constantly equal to 0. We will prove that Bd(0, 1), open in
Td by definition, is not open in the uniform topology. More precisely, no ball

Bρ̄(0, r) with r > 0 is included in Bd(0, 1): let n0 >
(

2
r

)2
and consider the

sequence

ξn =

{
r
2

if n ≤ n0

0 if n > n0
.

Then ρ̄(0, ξ) = r
2
< r so ξ ∈ Bρ̄(0, r) but d(0, ξ) =

√
n0
r

2
> 1 so ξ /∈ Bd(0, 1).

Next, we prove that Td ⊂ Tbox: let x ∈ `2(Z+), r > 0 and consider the box

B =
∏
n≥1

(xn −
r

2n
, xn +

r

2n
).

Then x ∈ B ⊂ Bd(x, r) since y ∈ B implies d(x, y)2 ≤
∑
n≥1

r2

4n
=
r2

3
.

Again, the inclusion is strict: consider the open box

B =
∏
n≥1

(
− 1

n
,

1

n

)
.

Although 0 ∈ B, no ball Bd(0, r) with r > 0 is included in B.

1Another approach to this result consists in proving that uniform convergence implies `2 convergence
and conclude by the sequential characterization of the closure.



Indeed, consider n0 >
2
r

and let η be the sequence defined by

ηn =

{
r
2

if n = n0

0 if n 6= n0
.

Then x /∈ B but d(0, x) = r
2
< r so x ∈ Bd(0, r). Therefore B /∈ Td.

We have proved that Tρ̄  Td  Tbox.

(b) Let R∞ denote the subset of `2(Z+) consisting of sequences that have
finitely many non-zero terms. Determine the closure of R∞ in `2(Z+).

We will prove that R∞`
2(Z+)

= `2(Z+), using the sequential characterization
of the closure in a metric space. For any x ∈ `2(Z+), let nx be the sequence
defined by

nxk =

{
xk if k ≤ n
0 if k > n

.

Then, d(nx, x)2 =
∑

k>n x
2
k. This quantity converges to 0 as n→∞ because

x is square-summable, so lim
n→∞

nx = x in `2(Z+).

(3) Let X be a topological space, Y a metric space. Assume that (fn)n≥0 is a
sequence of continuous functions that converges uniformly to f : X → Y .
Let (xn)n≥0 be a sequence in X such that lim

n→∞
xn = x. Prove that

lim
n→∞

fn(xn) = f(x).

Let ε > 0 and observe that the triangle inequality implies that

d(fn(xn), f(x)) ≤ d(fn(xn), f(xn))︸ ︷︷ ︸
An

+ d(f(xn), f(x))︸ ︷︷ ︸
Bn

.

The convergence of the sequence is assumed uniform so there exists an integer NA

such that d(fn(ξ), f(ξ)) <
ε

2
for any n ≥ NA and any ξ ∈ X.

In particular, An <
ε

2
for n ≥ NA.

Moreover, the Uniform Limit Theorem guarantees that f is continuous. Therefore,

there exists NB such that Bn <
ε

2
for any n ≥ NB.

It follows that d(fn(xn), f(x)) ≤ ε for any n greater than max(NA, NB).



(4) Ultrametric spaces.

Let X be a set equipped with a map d : X ×X −→ R such that
(1) d(x, y) ≥ 0 (3) d(x, y) = 0⇔ x = y
(2) d(x, y) = d(y, x) (4) d(x, z) ≤ max (d(x, y), d(y, z))

(a) Verify that d is a distance.
The only condition to check is the triangle inequality:

d(x, y) + d(y, z) = max (d(x, y), d(y, z)) + min (d(x, y), d(y, z))

≥ max (d(x, y), d(y, z)) by (1)

≥ d(x, z) by (4).

(b) Let B be an open ball for d. Prove that B = B(y, r) for every element
y ∈ B for some r > 0.
Let x ∈ X, r > 0 and B = B(x, r). Let y ∈ B, that is, assume d(x, y) < r.
Note that

d(x, z) < r ⇔ max(d(x, y)︸ ︷︷ ︸
<r

, d(x, z)) < r,

which implies that d(y, z) < r by (4). It follows that B ⊂ B(y, r). The reverse
inclusion follows from exchanging x and y in the previous argument.
Every point in the ball is a center!

(c) Prove that closed balls are open and open balls are closed in the
topology induced by d.

Let B be a closed ball, that is B = Bc(x, r) = {y ∈ X , d(x, y) ≤ r} for some
x ∈ X and r > 0. Let y ∈ B. The open ball B

(
y, r

2

)
is a neighborhood of y

contained in B:

d(x, z) ≤
(4)

max(d(x, y)︸ ︷︷ ︸
≤r

, d(y, z)︸ ︷︷ ︸
<r/2

) ≤ r

for any z ∈ B
(
y, r

2

)
, so B is open.

To prove that open balls are closed, we used the sequential characterization:
let (xn)n≥1 be a sequence in B(a, r) such that lim

n→∞
xn = x for some x ∈ X.

Since d(xn, x) can be made arbitrarily small, there exists an integer n0 such
that d(xn0 , x) < r. The ultrametric property of d implies that

d(a, x) ≤ max(d(a, xn0) , d(xn0 , x)) < r,

so x ∈ B(a, r), which is therefore sequentially closed.

Note: it might seem that a distance with such properties may not be useful in any

reasonable circumstances or even not exist at all. It is easy to check that the discrete

metric on any set is ultrametric. More interestingly the p-adic distances defined on Q are

ultrametric, which gives p-adic analysis a very different flavor from that of real analysis.


