Math 54 Summer 2015
Homework \#5: continuous maps, the product topology - Elements of solution
(1) (a) Consider \mathbb{Z}_{+}equipped with the topology in which open sets are the subsets U such that if n is in U, then any divisor of n belongs to U. Give a necessary and sufficient condition for a function $f: \mathbb{Z}_{+} \longrightarrow \mathbb{Z}_{+}$ to be continuous.

Assume f continuous. For $n \in \mathbb{Z}_{+}$, let U_{n} be the open set of all divisors of n. Let $a \in f^{-1}\left(U_{n}\right)$, assumed non-empty. Since f is continuous, $f^{-1}\left(U_{n}\right)$ is open, hence contains all the divisors of a. In other words, if $b \mid a$, then $f(b) \in U_{n}$, that is, $f(b) \mid n$. A necessary condition for continuity is therefore that f preserve divisibility:

$$
b|a \Rightarrow f(b)| f(a)
$$

Let us prove that the condition is also sufficient. Assume that $f(b) \mid f(a)$ whenever $b \mid a$ and let U be open in \mathbb{Z}_{+}. If $f^{-1}(U)=$, it is open. Otherwise, let $a \in f^{-1}(U)$. To prove that $f^{-1}(U)$ is open, it suffices to show that it contains all the divisors of a. The property of f implies that $f(b) \mid f(a)$ for every such divisor b and, U being open, this implies that $f(b) \in U$, that is, $b \in f^{-1}(U)$.
(b) Let $\chi_{\mathbb{Q}}$ be the indicator of \mathbb{Q}. Prove that the $\operatorname{map} \varphi: \mathbb{R} \longrightarrow \mathbb{R}$ defined by $\varphi(x)=x \cdot \chi_{\mathbb{Q}}(x)$ is continuous at exactly one point.

We shall prove that φ is continuous at 0 and discontinuous everywhere else. Note that $|\varphi(x)| \leq|x|$ for every $x \in \mathbb{R}$. In particular, let $\varepsilon>0$ and $\delta=\varepsilon$. Then $|x|<\delta$ implies $|\varphi(x)|<\varepsilon$, so φ is continuous at 0 .
Now observe that φ is odd and let $a>0$ be a positive number. Then,

$$
\varphi^{-1}\left(\left(\frac{a}{2}, \frac{3 a}{2}\right)\right)=\left(\frac{a}{2}, \frac{3 a}{2}\right) \cap \mathbb{Q}
$$

which is not open as no subset of \mathbb{Q} can contain an open interval of \mathbb{R}. Therefore, φ is not continuous at a.
(2) Let X and Y be topological spaces. If A is a subset of either, we denote by A^{\prime} the sets of accumulation points of A and by ∂A its boundary. Let $f: X \longrightarrow Y$ be a map. Determine the implications between the following statements.
(i) f is continuous.
(ii) $f\left(A^{\prime}\right) \subset(f(A))^{\prime}$ for any $A \subset X$.
(iii) $\partial\left(f^{-1}(B)\right) \subset f^{-1}(\partial B)$ for any $B \subset Y$.

Considering a constant function $\mathbb{R} \longrightarrow \mathbb{R}$ shows (i) \nRightarrow (ii). However, the converse is true: let A be a subset of X and $x \in \bar{A}=A \cup A^{\prime}$.

- If $x \in A$, then $f(x) \in f(A) \subset \overline{f(A)}$.
- If $x \in A^{\prime}$, then (ii) implies that $f(x) \in(f(A))^{\prime} \subset \overline{f(A)}$.

Therefore, $f(\bar{A}) \subset \overline{f(A)}$ for any $A \subset X$ so f is continuous by [M. Th. 18.1].
Let us prove that (i) \Rightarrow (iii). Assume f continuous, let $B \subset Y$ be a subset and $x \in \partial\left(f^{-1}(B)\right)$. If $x \notin f^{-1}(\partial B)$, there are two possibilities.
Case 1: $f(x) \in \stackrel{\circ}{B}$. Then $x \in f^{-1}(\stackrel{\circ}{B})$, open by continuity of f. Since $f^{-1}(\dot{B}) \subset$ $f^{-1}(B)$, it follows that x is an interior point of $f^{-1}(B)$, which is a contradiction.
Case 2: $f(x) \in Y \backslash \bar{B}$. Then $x \in f^{-1}(Y \backslash \bar{B})$, open by (i). In particular, there is a neighborhood U of x such that $U \subset f^{-1}(Y \backslash \bar{B})$. Since $x \in \partial\left(f^{-1}(B)\right)$, it follows that there exists some y in U such that $f(y) \in B$, which contradicts the assumption that $f(x) \in Y \backslash \bar{B}$. Altogether, this proves that $x \in f^{-1}(\partial B)$, hence the inclusion of (iii).

To establish the converse, we rely on the following characterization of continuity: Lemma: f is continuous if and only if $\overline{f^{-1}(B)} \subset f^{-1}(\bar{B})$ for every $B \subset Y$. Proof of the lemma: if f is continuous, the inverse image of the closed set \bar{B} is a closed set that contains $f^{-1}(B)$ hence its closure. Conversely, if B is closed, the condition becomes $\overline{f^{-1}(B)} \subset f^{-1}(B)$. The reverse inclusion holds by definition of the closure, so $\overline{f^{-1}(B)}=f^{-1}(B)$, hence $f^{-1}(B)$ is closed and f is continuous.
If f is discontinuous, the lemma implies the existence of some $B \subset Y$ such that $\overline{f^{-1}(B)} \not \subset f^{-1}(\bar{B})$. Let x be an element of $\overline{f^{-1}(B)}$ such that $f(x) \notin \bar{B}$, hence $f(x) \notin B$. Since $\overline{f^{-1}(B)}=f^{-1}(B) \cup \partial f^{-1}(B)$, it follows that $x \in \partial f^{-1}(B)$.
The fact that $f(x) \notin \bar{B}$ implies that $f(x) \notin \bar{B} \backslash \stackrel{\circ}{B}=\partial B$, that is

$$
\partial\left(f^{-1}(B)\right) \not \subset f^{-1}(\partial B)
$$

and we have proved the contrapositive of (iii) \Rightarrow (i).
To sum up, conditions (i) and (iii) are equivalent and they are implied by (ii), but the converse does not hold:

$$
(\mathrm{ii}) \Rightarrow(\mathrm{i}) \Leftrightarrow(\mathrm{iii}) .
$$

(3) Let X and Y be topological spaces, and assume Y Hausdorff. Let A be a subset of X and f_{1}, f_{2} continuous maps from the closure \bar{A} to Y. Prove that if f_{1} and f_{2} restrict to the same function $f: A \rightarrow Y$, then $f_{1}=f_{2}$.

We argue by contradiction: if $f_{1} \neq f_{2}$, there exists $x \in \bar{A}$ such that $f_{1}(x) \neq$ $f_{2}(x)$ and $x \notin A$. Since Y is Hausdorff, there exist disjoint neighborhoods V_{1} of $f_{1}(x)$ and V_{2} of $f_{2}(x)$. By continuity of f_{1} and f_{2}, both $f_{1}^{-1}\left(V_{1}\right)$ and $f_{2}^{-1}\left(V_{2}\right)$ are neighborhoods of x, and so is $U=f_{1}^{-1}\left(V_{1}\right) \cap f_{2}^{-1}\left(V_{2}\right)$. Since $x \in \bar{A} \backslash A$, the neighborhood U contains some a in A such that $f_{1}(a)=f(a)=f_{2}(a)$. Therefore, $f(a) \in V_{1} \cap V_{2}$ which is assumed empty.
(4) Let $\left\{X_{\alpha}\right\}_{\alpha \in J}$ be a family of topological spaces and $X=\prod_{\alpha \in J} X_{\alpha}$.
(a) Give a necessary and sufficient condition for a sequence $\left\{u_{n}\right\}_{n \in \mathbb{Z}_{+}}$to converge in X equipped with the product topology.

Assume that $\lim _{n \rightarrow \infty} u_{n}=l$. The projection maps π_{α} are continuous so the 'non-necessarily metrizable' part of the sequential characterization theorem [M. Th. 21.3] implies that

$$
(\star) \quad \forall \alpha \in J \quad, \quad \lim _{n \rightarrow \infty} u_{n \alpha}=l_{\alpha} \text {. }
$$

Conversely, assume that $\lim _{n \rightarrow \infty} \pi_{\alpha}\left(u_{n}\right)=\pi_{\alpha}(l)$ for every $\alpha \in J$ and let U be a neighborhood of l. We may assume that U is an intersection of cylinders, that is,

$$
U=\pi_{\alpha_{1}}^{-1}\left(U_{\alpha_{1}}\right) \cap \pi_{\alpha_{2}}^{-1}\left(U_{\alpha_{2}}\right) \cap \ldots \cap \pi_{\alpha_{p}}^{-1}\left(U_{\alpha_{p}}\right)
$$

since such elements form a basis for the product topology. With our assumption, there exists, for each $i \in\{1, \ldots, p\}$, a rank N_{i} such that $\pi_{\alpha_{i}}\left(u_{n}\right) \in U_{\alpha_{i}}$ for all $n \geq N_{i}$. This implies that $u_{n} \in U$ for all $n \geq \max _{1 \leq i \leq n} N_{i}$, so $\lim _{n \rightarrow \infty} u_{n}=l$.
(b) Does the result hold if X is equipped with the box topology?

The box topology is finer than the product topology so condition (\star) is certainly necessary. It is not sufficient, however, as the following example shows. Let $J=\mathbb{Z}_{+}$and $X_{k}=\mathbb{R}$ with the standard topology for each $k \in \mathbb{Z}_{+}$so that $X=\mathbb{R}^{\omega}$ as a set. Then, consider the sequence $\left({ }^{n} u\right)_{n \in \mathbb{Z}_{+}}$defined by

$$
{ }^{n} u_{k}=\left\{\begin{array}{ll}
1 & \text { if } k=n \\
0 & \text { if } k \neq n
\end{array} .\right.
$$

Then $\lim _{n \rightarrow \infty}{ }^{n} u_{k}=\lim _{n \rightarrow \infty} \pi_{k}\left({ }^{n} u\right)=0$ for every $k \in \mathbb{Z}_{+}$so ${ }^{n} u$ converges to the zero sequence in the product topology.
On the other hand, the open box $\prod_{k \in \mathbb{Z}_{+}}(-1,1)$ is a neighborhood of the zero sequence that contains no term of the sequence $\left({ }^{n} u\right)_{n \in \mathbb{Z}_{+}}$, which therefore cannot converge to zero in the box topology.

