
Math 54 Summer 2015
Homework #5: continuous maps, the product topology - Elements of solution

(1) (a) Consider Z+ equipped with the topology in which open sets are the
subsets U such that if n is in U , then any divisor of n belongs to U .
Give a necessary and sufficient condition for a function f : Z+ −→ Z+

to be continuous.

Assume f continuous. For n ∈ Z+, let Un be the open set of all divisors of n.
Let a ∈ f−1(Un), assumed non-empty. Since f is continuous, f−1(Un) is open,
hence contains all the divisors of a. In other words, if b|a, then f(b) ∈ Un, that
is, f(b)|n. A necessary condition for continuity is therefore that f preserve
divisibility:

b|a⇒ f(b)|f(a).

Let us prove that the condition is also sufficient. Assume that f(b)|f(a)
whenever b|a and let U be open in Z+. If f−1(U) =, it is open. Otherwise, let
a ∈ f−1(U). To prove that f−1(U) is open, it suffices to show that it contains
all the divisors of a. The property of f implies that f(b)|f(a) for every such
divisor b and, U being open, this implies that f(b) ∈ U , that is, b ∈ f−1(U).

(b) Let χQ be the indicator of Q. Prove that the map ϕ : R −→ R defined
by ϕ(x) = x · χQ(x) is continuous at exactly one point.

We shall prove that ϕ is continuous at 0 and discontinuous everywhere else.
Note that |ϕ(x)| ≤ |x| for every x ∈ R. In particular, let ε > 0 and δ = ε.
Then |x| < δ implies |ϕ(x)| < ε, so ϕ is continuous at 0.
Now observe that ϕ is odd and let a > 0 be a positive number. Then,
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which is not open as no subset of Q can contain an open interval of R. There-
fore, ϕ is not continuous at a.



(2) Let X and Y be topological spaces. If A is a subset of either, we denote
by A′ the sets of accumulation points of A and by ∂A its boundary.
Let f : X −→ Y be a map. Determine the implications between the
following statements.

(i) f is continuous.

(ii) f(A′) ⊂ (f(A))′ for any A ⊂ X.

(iii) ∂(f−1(B)) ⊂ f−1(∂B) for any B ⊂ Y .

Considering a constant function R −→ R shows (i) 6⇒(ii). However, the converse
is true: let A be a subset of X and x ∈ Ā = A ∪ A′.

- If x ∈ A, then f(x) ∈ f(A) ⊂ f(A).

- If x ∈ A′, then (ii) implies that f(x) ∈ (f(A))′ ⊂ f(A).

Therefore, f(Ā) ⊂ f(A) for any A ⊂ X so f is continuous by [M. Th. 18.1].

Let us prove that (i) ⇒ (iii). Assume f continuous, let B ⊂ Y be a subset and
x ∈ ∂(f−1(B)). If x /∈ f−1(∂B), there are two possibilities.

Case 1: f(x) ∈ B̊. Then x ∈ f−1(B̊), open by continuity of f . Since f−1(B̊) ⊂
f−1(B), it follows that x is an interior point of f−1(B), which is a contradiction.

Case 2: f(x) ∈ Y \ B̄. Then x ∈ f−1(Y \ B̄), open by (i). In particular, there
is a neighborhood U of x such that U ⊂ f−1(Y \ B̄). Since x ∈ ∂(f−1(B)), it
follows that there exists some y in U such that f(y) ∈ B, which contradicts the
assumption that f(x) ∈ Y \ B̄.
Altogether, this proves that x ∈ f−1(∂B), hence the inclusion of (iii).

To establish the converse, we rely on the following characterization of continuity:
Lemma: f is continuous if and only if f−1(B) ⊂ f−1(B̄) for every B ⊂ Y .
Proof of the lemma: if f is continuous, the inverse image of the closed set B̄ is a
closed set that contains f−1(B) hence its closure. Conversely, if B is closed, the

condition becomes f−1(B) ⊂ f−1(B). The reverse inclusion holds by definition of

the closure, so f−1(B) = f−1(B), hence f−1(B) is closed and f is continuous.

If f is discontinuous, the lemma implies the existence of some B ⊂ Y such that
f−1(B) 6⊂ f−1(B̄). Let x be an element of f−1(B) such that f(x) /∈ B̄, hence

f(x) /∈ B. Since f−1(B) = f−1(B) ∪ ∂f−1(B), it follows that x ∈ ∂f−1(B).

The fact that f(x) /∈ B̄ implies that f(x) /∈ B̄ \ B̊ = ∂B, that is

∂(f−1(B)) 6⊂ f−1(∂B)

and we have proved the contrapositive of (iii) ⇒ (i).

To sum up, conditions (i) and (iii) are equivalent and they are implied by (ii), but
the converse does not hold:

(ii)⇒ (i)⇔ (iii).



(3) Let X and Y be topological spaces, and assume Y Hausdorff. Let A be
a subset of X and f1, f2 continuous maps from the closure Ā to Y .
Prove that if f1 and f2 restrict to the same function f : A → Y , then
f1 = f2.

We argue by contradiction: if f1 6= f2, there exists x ∈ Ā such that f1(x) 6=
f2(x) and x /∈ A. Since Y is Hausdorff, there exist disjoint neighborhoods V1
of f1(x) and V2 of f2(x). By continuity of f1 and f2, both f−11 (V1) and f−12 (V2)
are neighborhoods of x, and so is U = f−11 (V1) ∩ f−12 (V2). Since x ∈ Ā \ A, the
neighborhood U contains some a in A such that f1(a) = f(a) = f2(a). Therefore,
f(a) ∈ V1 ∩ V2 which is assumed empty.

(4) Let {Xα}α∈J be a family of topological spaces and X =
∏
α∈J

Xα.

(a) Give a necessary and sufficient condition for a sequence {un}n∈Z+ to
converge in X equipped with the product topology.

Assume that limn→∞ un = l. The projection maps πα are continuous so the
‘non-necessarily metrizable’ part of the sequential characterization theorem
[M. Th. 21.3] implies that

(?) ∀α ∈ J , lim
n→∞

unα = lα.

Conversely, assume that limn→∞ πα(un) = πα(l) for every α ∈ J and let U be
a neighborhood of l. We may assume that U is an intersection of cylinders,
that is,

U = π−1α1
(Uα1) ∩ π−1α2

(Uα2) ∩ . . . ∩ π−1αp
(Uαp)

since such elements form a basis for the product topology. With our assump-
tion, there exists, for each i ∈ {1, . . . , p}, a rank Ni such that παi

(un) ∈ Uαi
for

all n ≥ Ni. This implies that un ∈ U for all n ≥ max
1≤i≤n

Ni, so limn→∞ un = l.

(b) Does the result hold if X is equipped with the box topology?

The box topology is finer than the product topology so condition (?) is cer-
tainly necessary. It is not sufficient, however, as the following example shows.
Let J = Z+ and Xk = R with the standard topology for each k ∈ Z+ so that
X = Rω as a set. Then, consider the sequence (nu)n∈Z+ defined by

nuk =

{
1 if k = n
0 if k 6= n

.

Then limn→∞
nuk = limn→∞ πk(

nu) = 0 for every k ∈ Z+ so nu converges to
the zero sequence in the product topology.
On the other hand, the open box

∏
k∈Z+

(−1, 1) is a neighborhood of the zero

sequence that contains no term of the sequence (nu)n∈Z+ , which therefore
cannot converge to zero in the box topology.


