Math 54 Summer 2015
Homework #5: continuous maps, the product topology - Elements of solution

(1) (a)

Consider Z, equipped with the topology in which open sets are the
subsets U such that if n is in U, then any divisor of n belongs to U.
Give a necessary and sufficient condition for a function f:Z, — Z,
to be continuous.

Assume f continuous. For n € Z., let U,, be the open set of all divisors of n.
Let a € f~1(U,), assumed non-empty. Since f is continuous, f~!(U,,) is open,
hence contains all the divisors of a. In other words, if b|a, then f(b) € U,, that
is, f(b)|n. A necessary condition for continuity is therefore that f preserve
divisibility:
bla = f(b)[f(a).

Let us prove that the condition is also sufficient. Assume that f(b)|f(a)
whenever b|a and let U be open in Z,. If f~1(U) =, it is open. Otherwise, let
a € f~1(U). To prove that f~1(U) is open, it suffices to show that it contains
all the divisors of a. The property of f implies that f(b)|f(a) for every such
divisor b and, U being open, this implies that f(b) € U, that is, b € f~1(U).

Let x@ be the indicator of Q. Prove that the map ¢ : R — R defined
by ¢(x) = x - xo(z) is continuous at exactly one point.

We shall prove that ¢ is continuous at 0 and discontinuous everywhere else.
Note that |p(z)| < |z| for every € R. In particular, let ¢ > 0 and 6 = ¢.
Then |z| < ¢ implies |p(x)| < €, so ¢ is continuous at 0.

Now observe that ¢ is odd and let a > 0 be a positive number. Then,
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which is not open as no subset of QQ can contain an open interval of R. There-
fore, ¢ is not continuous at a.



(2) Let X and Y be topological spaces. If A is a subset of either, we denote
by A’ the sets of accumulation points of A and by 0A its boundary.
Let f : X — Y be a map. Determine the implications between the
following statements.

(i) f is continuous.
(ii) f(A") C (f(A)) for any A C X.
(ii) o(f~*(B)) € f*(9B) for any BC Y.

Considering a constant function R — R shows (i)#-(ii). However, the converse
is true: let A be a subset of X and x € A =AU A"

-Ifz € A, then f(z) € f(A) C f(A).

- If x € A, then (ii) implies that f(z) € (f(A4)) C f(A).
Therefore, f(A) C f(A) for any A C X so f is continuous by [M. Th. 18.1].

Let us prove that (i) = (iii). Assume f continuous, let B C Y be a subset and
r € d(f1(B)). If x ¢ f~1(OB), there are two possibilities.

Case 1: f(z) € B. Then z € - (B ) open by contmulty of f. Since f~1(B ) C
f7Y(B), it follows that x is an interior point of f~!(B), which is a contradiction.
Case 2: f(z) € Y\ B. Then x € f~1(Y \ B), open by (i). In particular, there
is a neighborhood U of x such that U C f~Y(Y \ B). Since z € 9(f~1(B)), it
follows that there exists some y in U such that f(y) € B, which contradicts the
assumption that f(z) € Y \ B.

Altogether, this proves that € f~1(9B), hence the inclusion of (iii).

To establish the converse, we rely on the following characterization of continuity:
Lemma: f is continuous if and only if f=1(B) c f~(B) for every B C Y.

Proof of the lemma: if f is continuous, the inverse image of the closed set B is a
closed set that contains f* (B) hence its closure. Conversely, if B is closed, the

condition becomes f~1(B) C f~'(B). The reverse inclusion holds by definition of
the closure, so f~1(B) = f~1(B), hence f~!(B) is closed and f is continuous.

If f is discontinuous, the lemma implies the existence of some B C Y such that
“Y(B) ¢ f~YB). Let x be an element of f~!(B) such that f(z) ¢ B, hence
f(x) ¢ B. Since f~1(B) = f~Y(B)Udf~(B), it follows that x € 9f~1(B).
The fact that f(z) ¢ B implies that f(z) ¢ B\ B = 0B, that is
o(f~(B)) ¢ f(0B)

and we have proved the contrapositive of (iii) = (i).

To sum up, conditions (i) and (iii) are equivalent and they are implied by (ii), but
the converse does not hold:

(i) = (i) « (iii).



(3) Let X and Y be topological spaces, and assume Y Hausdorff. Let A be
a subset of X and f;, f; continuous maps from the closure A to Y.
Prove that if f; and f; restrict to the same function f : A — Y, then

fi=

fa

We argue by contradiction: if f; # f,, there exists € A such that fi(z) #
fo(z) and = ¢ A. Since Y is Hausdorff, there exist disjoint neighborhoods V;
of fi(z) and V, of fo(x). By continuity of f; and fy, both f;7 (V1) and f;'(V3)
are neighborhoods of x, and so is U = f; 1 (V;) N f; 1 (V). Since z € A\ A, the
neighborhood U contains some a in A such that fi(a) = f(a) = fa(a). Therefore,
f(a) € Vi NV, which is assumed empty.

(4) Let {X,}aes be a family of topological spaces and X = [] X,.

()

acJ
Give a necessary and sufficient condition for a sequence {u,}ncz, to

converge in X equipped with the product topology.

Assume that lim,,_,., u, = [. The projection maps 7, are continuous so the
‘non-necessarily metrizable’ part of the sequential characterization theorem
[M. Th. 21.3] implies that

(%) VaeJ ,  lim u,, = l,.

n—o0

Conversely, assume that lim,, o 74 (u,) = m4(1) for every a € J and let U be
a neighborhood of [. We may assume that U is an intersection of cylinders,
that is,

U=, (Us) N7y, (Ua,)N... 0 W;pl(Uap)
since such elements form a basis for the product topology. With our assump-
tion, there exists, for each ¢ € {1,...,p}, arank N; such that 7, (u,) € U,, for
all n > N;. This implies that u,, € U for all n > max N;, so lim,, oo u, = 1.

Does the result hold if X is equipped with the box topology?

The box topology is finer than the product topology so condition (%) is cer-
tainly necessary. It is not sufficient, however, as the following example shows.
Let J =7Z, and X, = R with the standard topology for each k € Z, so that
X =R as a set. Then, consider the sequence ("u),ez, defined by

w1 ifk=n
YT 0 ifk#n
Then lim,, oo "uy, = lim,, oo T ("u) = 0 for every k € Z, so "u converges to
the zero sequence in the product topology.
On the other hand, the open box er@(—l, 1) is a neighborhood of the zero

sequence that contains no term of the sequence ("u)ncz,, which therefore
cannot converge to zero in the box topology.



