Math 54 Summer 2015
Homework \#5: continuous maps, the product topology
(1) (a) Consider \mathbb{Z}_{+}equipped with the topology in which open sets are the subsets U such that if n is in U, then any divisor of n belongs to U. Give a necessary and sufficient condition for a function $f: \mathbb{Z}_{+} \longrightarrow \mathbb{Z}_{+}$to be continuous.
(b) Let $\chi_{\mathbb{Q}}$ be the indicator of \mathbb{Q}. Prove that the $\operatorname{map} \varphi: \mathbb{R} \longrightarrow \mathbb{R}$ defined by $\varphi(x)=x \cdot \chi_{\mathbb{Q}}(x)$ is continuous at exactly one point.
(2) Let X and Y be topological spaces. If A is a subset of either, we denote by A^{\prime} the sets of accumulation points of A and by ∂A its boundary.
Let $f: X \longrightarrow Y$ be a map. Determine the implications between the following statements:
(i) f is continuous.
(ii) $f\left(A^{\prime}\right) \subset(f(A))^{\prime}$ for any $A \subset X$.
(iii) $\partial\left(f^{-1}(B)\right) \subset f^{-1}(\partial B)$ for any $B \subset Y$.
(3) Let X and Y be topological spaces, and assume Y Hausdorff. Let A be a subset of X and f_{1}, f_{2} continuous maps from the closure \bar{A} to Y.
Prove that if f_{1} and f_{2} restrict to the same function $f: A \rightarrow Y$, then $f_{1}=f_{2}$.
(4) Let $\left\{X_{\alpha}\right\}_{\alpha \in J}$ be a family of topological spaces and $X=\prod_{\alpha \in J} X_{\alpha}$.
(a) Give a necessary and sufficient condition for a sequence $\left\{u_{n}\right\}_{n \in \mathbb{Z}_{+}}$to converge in X equipped with the product topology.
(b) Does the result hold if X is equipped with the box topology?

