Math 54 Summer 2015
Homework \#4: closed sets and limit points - Elements of solution
(1) Prove the following result:

Theorem Let X be a set and $\gamma: \mathcal{P}(X) \rightarrow \mathcal{P}(X)$ a map such that
(i) $\gamma(\emptyset)=\emptyset$;
(ii) $A \subset \gamma(A)$;
(iii) $\gamma(\gamma(A))=\gamma(A)$;
(iv) $\gamma(A \cup B)=\gamma(A) \cup \gamma(B)$.

Then the family $\mathcal{T}=\{X \backslash \gamma(A), A \subset X\}$ is a topology in which $\bar{A}=\gamma(A)$.
First, we prove that $A \subset B \Rightarrow \gamma(A) \subset \gamma(B)$. To do so, observe that $A \subset B$ is equivalent to $A \cup B=B$. Therefore, $\gamma(B)=\gamma(A \cup B) \stackrel{(\text { iv })}{=} \gamma(A) \cup \gamma(B) \supset \gamma(A)$. (O1) The subset $X=X \backslash \emptyset \stackrel{(\mathrm{i})}{=} X \backslash \gamma(\emptyset)$ is in \mathcal{T}. Moreover, (ii) implies that $X=\gamma(X)$ so $\emptyset=X \backslash \gamma(X)$ is also in \mathcal{T}.
(O2) Let $\left\{U_{\alpha}\right\}_{\alpha \in J}$ be a family such that $U_{\alpha}=X \backslash \gamma\left(A_{\alpha}\right)$ for each $\alpha \in J$, and $U=\bigcup_{\alpha \in J} A_{\alpha}$. De Morgan's Laws imply that

$$
X \backslash U=\bigcap_{\alpha \in J} A_{\alpha}
$$

and we want to prove that this set is of the form $\gamma(B)$ for some subset B of X. Since $\bigcap_{\alpha \in J} \gamma\left(A_{\alpha}\right) \subset \gamma\left(A_{\alpha}\right)$ for all $\alpha \in J$, and γ preserves inclusions, we get, for all $\alpha \in J$,

$$
\gamma(X \backslash U) \subset \gamma\left(\gamma\left(A_{\alpha}\right)\right) \stackrel{(\mathrm{iiii})}{=} \gamma\left(A_{\alpha}\right)
$$

so that $\gamma(X \backslash U) \subset \bigcap_{\alpha \in J} \gamma\left(A_{\alpha}\right)=X \backslash U$, the reverse inclusion is guaranteed by (ii), hence $X \backslash U=\gamma(X \backslash U)$, that is,

$$
U=X \backslash \gamma(X \backslash U)
$$

and \mathcal{T} is stable under arbitrary unions.
(O3) Let $\left\{U_{i}=X \backslash \gamma\left(A_{i}\right)\right\}_{1 \leq i \leq n}$ be a finite family of elements of \mathcal{T}. De Morgan's Laws imply that

$$
X \backslash \bigcap_{i=1}^{n} U_{i}=X \backslash \bigcap_{i=1}^{n} \gamma\left(A_{i}\right)=X \backslash \gamma\left(\bigcap_{i=1}^{n} A_{i}\right)
$$

where the last equality follows from (iv) by induction. This shows that \mathcal{T} is stable under finite intersections, which concludes the proof that it is a topology on X.
Let A be a subset of X. Then $\gamma(A)$ is closed by definition of \mathcal{T} and $A \subset \gamma(A)$ by (ii) so $\bar{A} \subset \gamma(A)$. Conversely, observe that $X \backslash \bar{A}$, being open, is of the form $X \backslash \gamma(B)$, that is, $\bar{A}=\gamma(B)$ for some $B \subset X$. Since $A \subset \bar{A}$, and γ preserves inclusions, it follows that

$$
\gamma(A) \subset \gamma(\bar{A})=\gamma(\gamma(B)) \stackrel{(\mathrm{iii})}{=} \gamma(B)=\bar{A},
$$

hence $\gamma(A)=\bar{A}$.
(2) (a) Show that a topological space X is Hausdorff if and only if the diagonal $\Delta=\{(x, x), x \in X\}$ is closed in $X \times X$.

A key observation is that for A and B subsets of X, the condition $A \cap B=\emptyset$ is equivalent to $(A \times B) \cap \Delta=\emptyset$.
Now, assume X Hausdorff and let $(x, y) \in(X \times X) \backslash \Delta$. Since $x \neq y$, there exist disjoint open sets $U_{x} \ni x$ and $U_{y} \ni y$. By definition of the product topology, $U=U_{x} \times U_{y}$ is a neighborhood of (x, y) and by the preliminary observation, $U \cap \Delta=\emptyset$ so $X \times X \backslash \Delta$ is open hence Δ is closed.
Conversely, assume that Δ is closed and let $x \neq y$ in X. Since (x, y) belongs to $(X \times X) \backslash \Delta$ assumed open, there exists a neighborhood V of (x, y) such that $V \cap \Delta=\emptyset$. Product of open sets form a basis for the topology of $X \times X$, so there exist open sets U_{1} and U_{2} such that $(x, y) \in U_{1} \times U_{2} \subset V$ so $\left(U_{1} \times U_{2}\right) \cap \Delta=\emptyset$ which, by the preliminary observation again, guarantees that U_{1} and U_{2} are disjoint neighborhoods of x and y respectively.
(b) Determine the accumulation points of $A=\left\{\frac{1}{m}+\frac{1}{n}, m, n \in \mathbb{Z}_{+}\right\} \subset \mathbb{R}$.

Let A^{\prime} denote the set of accumulation points of A. The fact that $\lim _{n \rightarrow \infty} \frac{1}{n}=0$ implies that $\left\{\frac{1}{p}, p \in \mathbb{Z}_{+}\right\} \cup\{0\} \subset A^{\prime}$. Let us prove the converse inclusion. First, observe that if an interval (a, b) with $a>0$ contains infinitely many elements of the form $\frac{1}{m}+\frac{1}{n}$, then one of the variables m and n must take only finitely many values, while the other takes infinitely many values. Now let $x \in A^{\prime}$ with $x>0$. For any $\varepsilon>0$, the set $B_{\varepsilon}=(x-\varepsilon, x+\varepsilon) \cap A$ must be infinite. Without loss of generality, we can assume that

$$
B_{\varepsilon}=\left\{\frac{1}{m}+\frac{1}{n}, m \in F, n \in I_{m}\right\}
$$

with F finite and at least one I_{m} infinite, say $I_{m_{0}}$. For all $n \in I_{m_{0}}$, we have

$$
\left|\left|x-\frac{1}{m_{0}}\right|-\frac{1}{n}\right| \leq\left|x-\frac{1}{m_{0}}-\frac{1}{n}\right|<\varepsilon
$$

For n large enough, the left-hand side can be made arbitrarily close to $\left|x-\frac{1}{m_{0}}\right|$, in particular, we get that $\frac{1}{2}\left|x-\frac{1}{m_{0}}\right|<\varepsilon$. If $x>0$ is not of the form $\frac{1}{m_{0}}$ for any $m_{0} \in \mathbb{Z}_{+}$, then there exists a positive minimum value for the numbers $\frac{1}{2}\left|x-\frac{1}{m_{0}}\right|$ and B_{ε} cannot be infinite for arbitrarily small values of ε.
(3) The boundary of a subset A in a topological space X is defined by

$$
\partial A=\bar{A} \cap \overline{X \backslash A} .
$$

(a) Show that $\bar{A}=\AA \sqcup \partial A^{1}$.

If $x \in \AA$, there exists a neighborhood of A that is included in A. If $x \in \partial A$, in particular $x \in \overline{X \backslash A}$ so every neighborhood of x intersects $X \backslash A$. This is a contradiction so $A \cap \partial A=\emptyset$.
The interior and boundary of A are included in \bar{A} by definition so the inclusion $\bar{A} \supset \AA \sqcup \partial A$ is trivial. Conversely, let $x \in \bar{A}$. If x has a neighborhood U such that $U \subset A$, then $x \in \AA$. The alternative is that every neighborhood of x has non-empty intersection with $X \backslash A$, that is $x \in \overline{X \backslash A}$ so that $x \in \partial A$. Therefore, $\bar{A} \subset \AA \sqcup \partial A$, which concludes the proof.
(b) Show that $\partial A=\emptyset$ if and only if A is open and closed.

By definition of the interior and the closure, $\AA \subseteq A \subseteq \bar{A}$ and A is open and closed if and only if $\AA=\bar{A}$. By (a), this is equivalent to $\partial A=\emptyset$.
(c) Show that U is open if and only if $\partial U=\bar{U} \backslash U$.

The result of (a) states that U and $\stackrel{\circ}{U}$ are complements in \bar{U}, so $\stackrel{\circ}{U}=\bar{U} \backslash \partial U$ and U is equal to $\stackrel{O}{U}$, that is, U is open if and only if $U=\bar{U} \backslash \partial U$, which is equivalent to the condition $\partial U=\bar{U} \backslash U$.
(d) If U is open, is it true that $U=\stackrel{\circ}{U}$?

If U is open, the inclusion $U \subset \bar{U}$ implies that $U \subset \stackrel{\circ}{U}$. However, the reverse inclusion may fail: consider for instance $U=\mathbb{R} \backslash\{0\}$ in \mathbb{R}. It is open as the union of open intervals and $\bar{U}=\mathbb{R}$ so that $\stackrel{\circ}{U}=\mathbb{R} \supsetneq U$.

[^0](4) Find the boundary and interior of each of the following subsets of \mathbb{R}^{2}.
(a) $A=\{(x, y), y=0\}$
(b) $B=\{(x, y), x>0$ and $y \neq 0\}$
(c) $C=A \cup B$
(d) $D=\mathbb{Q} \times \mathbb{R}$
(e) $E=\left\{(x, y), 0<x^{2}-y^{2} \leq 1\right\}$
(f) $F=\left\{(x, y), x \neq 0\right.$ and $\left.y \leq \frac{1}{x}\right\}$

Note that, except for (d), a picture is very helpful to determine the boundary and interior of the subsets at hand before rigorously justifying the intuition, using what is known about the (metric) topology of \mathbb{R}^{2}.
(a) Observe that A is closed, as the complement of $\mathbb{R} \times(-\infty, 0) \cup(0,+\infty)$ which is open as a product of open sets. Another way to see this is to remark that every element of $\mathbb{R}^{2} \backslash A$ is of the form (x, y) with $y \neq 0$, and for any $x \in \mathbb{R}$, the basis element

$$
V=(x-1, x+1) \times\left(y-\frac{|y|}{2}, y+\frac{|y|}{2}\right)
$$

satisfies $(x, y) \in V \subset \mathbb{R}^{2} \backslash A$.
Moreover, the interior of A is empty: every element of A is of the form ($x, 0$), any neighbourhood of which contains a basis element $(a, b) \times(c, d)$ with $c<0<d$, which in turn cannot be included in A, for it contains $\left(x, \frac{d}{2}\right) \notin A$.
We conclude that $\AA=\emptyset$ and $\partial A=A$.
(b) Note that $B=(0,+\infty) \times(-\infty, 0) \cup(0,+\infty)$ is open as a product of open sets. Another way to see this is to consider $(x, y) \in B$, that is, $x>0$ and $y \neq 0$. Then

$$
V=\left(\frac{x}{2}, \frac{3 x}{2}\right) \times\left(y-\frac{|y|}{2}, y+\frac{|y|}{2}\right)
$$

is a neighborhood of (x, y) that is contained in B, which is therefore open.
Finally, B is open because it is the inverse image of $\mathbb{R}^{2} \backslash A$ open under the continuous map $(x, y) \mapsto(\ln x, y)$.
Let us prove that the closure of B is the closed half-plane R defined by $x \geq 0$. Let V be a neighborhood of $(x, y) \in R$. If $(x, y) \in B$, there is nothing to prove. If $x y=0$, then V contains a subset of the form $(a, b) \times(c, d)$ with $0<b$ and $c d \neq 0$ so $\left(\frac{x+b}{2}, \frac{y+d}{2}\right)$ or $\left(\frac{x+b}{2}, \frac{y+c}{2}\right)$ belongs to $V \cap B$, which is therefore not empty. We have proved that $R \subset \bar{B}$. The converse inclusion follows from the same argument invoked to prove that $\mathbb{R}^{2} \backslash A$ is open.
Since B is open, it follows from (c) in the previous problem that $\partial B=\bar{B} \backslash B$, that is ∂B is the union of the vertical axis and the positive horizontal axis.
(c) Since $\overline{A \cup B}=\bar{A} \cup \bar{B}$, it follows form (a) and (b) that $\bar{C}=R \cup A$ consists of the points (x, y) such that $x \geq 0$ or $y=0$.

Next, \dot{C} is the right half-plane $(0,+\infty) \times \mathbb{R}$: this set is open as the product of open sets and it is maximal. Indeed, if $x \leq 0$, then any neighborhood of (x, y) contains a subset of the form $(a, b) \times(c, d)$ with $a<0$ and $c d \neq 0$ so $\left(\frac{x+a}{2}, \frac{y+d}{2}\right)$ or $\left(\frac{x+a}{2}, \frac{y+c}{2}\right)$ belongs to $V \cap\left(\mathbb{R}^{2} \backslash C\right)$, which is therefore not empty.
It follows from the result proved in (a) of the previous problem that $\partial C=\bar{C} \backslash \dot{C}$ is the union of the vertical axis and the negative horizontal axis.
(d) Every non-empty open interval of \mathbb{R} contains infinitely many rational and irrational numbers, so every product of intervals contains infinitely many elements of D and $\mathbb{R}^{2} \backslash D$. Therefore, $\partial D=\mathbb{R}^{2}$ and, since $\partial D=\bar{D} \backslash \stackrel{D}{D}$, it follows immediately that $D=\emptyset$.
(e) First, observe that the set $\Omega=\left\{(x, y), 0<x^{2}-y^{2}<1\right\}$ is open, for instance as the inverse image of the open set $(0,1)$ under the map $(x, y) \mapsto x^{2}-y^{2}$, which is polynomial, hence continuous.
A similar argument, shows that $\Gamma=\left\{(x, y), 0 \leq x^{2}-y^{2} \leq 1\right\}$ is closed. Since $\Omega \subset E \subset \Gamma$, we get the chain of inclusions $\Omega \subset E^{\circ} \subset \bar{E} \subset \Gamma$, hence

$$
\partial E=\bar{E} \backslash \stackrel{\circ}{E} \subset \Gamma \backslash \Omega
$$

In other words, a boundary point (x, y) of E satisfies either $x^{2}=y^{2}$ or $x^{2}-y^{2}=1$. Conversely, assume that $x^{2}-y^{2}=1$. Every neighbourhood of (x, y) contains the points $P_{\delta}=(x+\delta, y)$ for $\delta \in\left(-\delta_{0}, \delta_{0}\right)$ with $\delta_{0}>0$. Since

$$
(x+\delta)^{2}-y^{2}=1+2 \delta(x+\delta)
$$

and the quantity $2 \delta(x+\delta)$ takes arbitrarily small positive values when δ runs over $\left(-\delta_{0}, \delta_{0}\right)$, we see that there are points P_{δ} in $\mathbb{R}^{2} \backslash E$ and E so (x, y) is a boundary point of E. One can proceed in the same way to verify that the two lines given by the equation $x^{2}=y^{2}$ are also included in ∂E, which concludes the proof that ∂E consists exactly of the union of the hyperbola with equation $x^{2}-y^{2}=1$ and the lines with equations $y= \pm x$.
It also follows that $\stackrel{\circ}{E}=\Omega$. We have already obtained the inclusion $\Omega \subset \stackrel{\circ}{E}$. Conversely, assume that (x, y) is a point in E not in Ω. Then $x^{2}-y^{2}=1$ so (x, y) belongs to ∂E which is disjoint from \AA°. This proves that $E \subset \Omega$ and the equality.
(f) No new technique is needed to prove that $\stackrel{\circ}{F}$ is the region located strictly below the branches of the hyperbola with equation $x y=1$, that is,

$$
\stackrel{\circ}{F}=\left\{(x, y), x \neq 0 \text { and } y<\frac{1}{x}\right\}
$$

and that ∂F is the union of the hyperbola and the vertical axis:

$$
\stackrel{\circ}{F}=\left\{(x, y), x=0 \text { or } y=\frac{1}{x}\right\} .
$$

[^0]: ${ }^{1}$ The disjoint union symbol \sqcup is used to indicate that the sets in the union have empty intersection.

