Math 54 Summer 2015

Homework #4: closed sets and limit points - Elements of solution

(1) Prove the following result:

Theorem Let X be a set and $\gamma : \mathcal{P}(X) \to \mathcal{P}(X)$ a map such that (i) $\gamma(\emptyset) = \emptyset$;

- (ii) $A \subset \gamma(A)$;
- (iii) $\gamma(\gamma(A)) = \gamma(A);$
- (iv) $\gamma(A \cup B) = \gamma(A) \cup \gamma(B)$.

Then the family $\mathcal{T} = \{X \setminus \gamma(A), A \subset X\}$ is a topology in which $\overline{A} = \gamma(A)$.

First, we prove that $A \subset B \Rightarrow \gamma(A) \subset \gamma(B)$. To do so, observe that $A \subset B$ is equivalent to $A \cup B = B$. Therefore, $\gamma(B) = \gamma(A \cup B) \stackrel{(iv)}{=} \gamma(A) \cup \gamma(B) \supset \gamma(A)$.

(O1) The subset $X = X \setminus \emptyset \stackrel{\text{(i)}}{=} X \setminus \gamma(\emptyset)$ is in \mathcal{T} . Moreover, (ii) implies that $X = \gamma(X)$ so $\emptyset = X \setminus \gamma(X)$ is also in \mathcal{T} .

(O2) Let $\{U_{\alpha}\}_{\alpha \in J}$ be a family such that $U_{\alpha} = X \setminus \gamma(A_{\alpha})$ for each $\alpha \in J$, and $U = \bigcup_{\alpha \in J} A_{\alpha}$. De Morgan's Laws imply that

$$X \setminus U = \bigcap_{\alpha \in J} A_{\alpha}$$

and we want to prove that this set is of the form $\gamma(B)$ for some subset B of X. Since $\bigcap_{\alpha \in J} \gamma(A_{\alpha}) \subset \gamma(A_{\alpha})$ for all $\alpha \in J$, and γ preserves inclusions, we get, for all $\alpha \in J$,

$$\gamma(X \setminus U) \subset \gamma(\gamma(A_{\alpha})) \stackrel{\text{(iii)}}{=} \gamma(A_{\alpha})$$

so that $\gamma(X \setminus U) \subset \bigcap_{\alpha \in J} \gamma(A_{\alpha}) = X \setminus U$, the reverse inclusion is guaranteed by (ii), hence $X \setminus U = \gamma(X \setminus U)$, that is,

$$U = X \setminus \gamma(X \setminus U)$$

and \mathcal{T} is stable under arbitrary unions.

(O3) Let $\{U_i = X \setminus \gamma(A_i)\}_{1 \le i \le n}$ be a finite family of elements of \mathcal{T} . De Morgan's Laws imply that

$$X \setminus \bigcap_{i=1}^{n} U_i = X \setminus \bigcap_{i=1}^{n} \gamma(A_i) = X \setminus \gamma\left(\bigcap_{i=1}^{n} A_i\right)$$

where the last equality follows from (iv) by induction. This shows that \mathcal{T} is stable under finite intersections, which concludes the proof that it is a topology on X.

Let A be a subset of X. Then $\gamma(A)$ is closed by definition of \mathcal{T} and $A \subset \gamma(A)$ by (ii) so $\overline{A} \subset \gamma(A)$. Conversely, observe that $X \setminus \overline{A}$, being open, is of the form $X \setminus \gamma(B)$, that is, $\overline{A} = \gamma(B)$ for some $B \subset X$. Since $A \subset \overline{A}$, and γ preserves inclusions, it follows that

$$\gamma(A) \subset \gamma(\bar{A}) = \gamma(\gamma(B)) \stackrel{\text{(iii)}}{=} \gamma(B) = \bar{A},$$

hence $\gamma(A) = \overline{A}$.

(2) (a) Show that a topological space X is Hausdorff if and only if the diagonal $\Delta = \{(x, x), x \in X\}$ is closed in $X \times X$.

A key observation is that for A and B subsets of X, the condition $A \cap B = \emptyset$ is equivalent to $(A \times B) \cap \Delta = \emptyset$.

Now, assume X Hausdorff and let $(x, y) \in (X \times X) \setminus \Delta$. Since $x \neq y$, there exist disjoint open sets $U_x \ni x$ and $U_y \ni y$. By definition of the product topology, $U = U_x \times U_y$ is a neighborhood of (x, y) and by the preliminary observation, $U \cap \Delta = \emptyset$ so $X \times X \setminus \Delta$ is open hence Δ is closed.

Conversely, assume that Δ is closed and let $x \neq y$ in X. Since (x, y) belongs to $(X \times X) \setminus \Delta$ assumed open, there exists a neighborhood V of (x, y) such that $V \cap \Delta = \emptyset$. Product of open sets form a basis for the topology of $X \times X$, so there exist open sets U_1 and U_2 such that $(x, y) \in U_1 \times U_2 \subset V$ so $(U_1 \times U_2) \cap \Delta = \emptyset$ which, by the preliminary observation again, guarantees that U_1 and U_2 are disjoint neighborhoods of x and y respectively.

(b) Determine the accumulation points of $A = \left\{\frac{1}{m} + \frac{1}{n}, m, n \in \mathbb{Z}_+\right\} \subset \mathbb{R}$.

Let A' denote the set of accumulation points of A. The fact that $\lim_{n\to\infty} \frac{1}{n} = 0$ implies that $\left\{\frac{1}{p}, p \in \mathbb{Z}_+\right\} \cup \{0\} \subset A'$. Let us prove the converse inclusion. First, observe that if an interval (a, b) with a > 0 contains infinitely many elements of the form $\frac{1}{m} + \frac{1}{n}$, then one of the variables m and n must take only finitely many values, while the other takes infinitely many values. Now let $x \in A'$ with x > 0. For any $\varepsilon > 0$, the set $B_{\varepsilon} = (x - \varepsilon, x + \varepsilon) \cap A$ must be infinite. Without loss of generality, we can assume that

$$B_{\varepsilon} = \left\{ \frac{1}{m} + \frac{1}{n} , \ m \in F \ , \ n \in I_m \right\}$$

with F finite and at least one I_m infinite, say I_{m_0} . For all $n \in I_{m_0}$, we have

$$\left| \left| x - \frac{1}{m_0} \right| - \frac{1}{n} \right| \le \left| x - \frac{1}{m_0} - \frac{1}{n} \right| < \varepsilon.$$

For *n* large enough, the left-hand side can be made arbitrarily close to $\left|x - \frac{1}{m_0}\right|$, in particular, we get that $\frac{1}{2}\left|x - \frac{1}{m_0}\right| < \varepsilon$. If x > 0 is not of the form $\frac{1}{m_0}$ for any $m_0 \in \mathbb{Z}_+$, then there exists a positive minimum value for the numbers $\frac{1}{2}\left|x - \frac{1}{m_0}\right|$ and B_{ε} cannot be infinite for arbitrarily small values of ε .

(3) The boundary of a subset A in a topological space X is defined by

$$\partial A = \bar{A} \cap \overline{X \setminus A}.$$

(a) Show that $\overline{A} = A \sqcup \partial A^1$.

If $x \in \mathring{A}$, there exists a neighborhood of A that is included in A. If $x \in \partial A$, in particular $x \in \overline{X \setminus A}$ so every neighborhood of x intersects $X \setminus A$. This is a contradiction so $\mathring{A} \cap \partial A = \emptyset$.

The interior and boundary of A are included in \overline{A} by definition so the inclusion $\overline{A} \supset \mathring{A} \sqcup \partial A$ is trivial. Conversely, let $x \in \overline{A}$. If x has a neighborhood U such that $U \subset A$, then $x \in \mathring{A}$. The alternative is that every neighborhood of x has non-empty intersection with $X \setminus A$, that is $x \in \overline{X \setminus A}$ so that $x \in \partial A$. Therefore, $\overline{A} \subset \mathring{A} \sqcup \partial A$, which concludes the proof.

(b) Show that $\partial A = \emptyset$ if and only if A is open and closed.

By definition of the interior and the closure, $A \subseteq A \subseteq \overline{A}$ and A is open and closed if and only if $A = \overline{A}$. By (a), this is equivalent to $\partial A = \emptyset$.

(c) Show that U is open if and only if $\partial U = \overline{U} \setminus U$.

The result of (a) states that U and \mathring{U} are complements in \overline{U} , so $\mathring{U} = \overline{U} \setminus \partial U$ and U is equal to \mathring{U} , that is, U is open if and only if $U = \overline{U} \setminus \partial U$, which is equivalent to the condition $\partial U = \overline{U} \setminus U$.

(d) If U is open, is it true that $U = \overset{\circ}{U}$?

If U is open, the inclusion $U \subset \overline{U}$ implies that $U \subset \overset{\circ}{U}$. However, the reverse inclusion may fail: consider for instance $U = \mathbb{R} \setminus \{0\}$ in \mathbb{R} . It is open as the union of open intervals and $\overline{U} = \mathbb{R}$ so that $\overset{\circ}{U} = \mathbb{R} \supseteq U$.

¹The disjoint union symbol \sqcup is used to indicate that the sets in the union have empty intersection.

- (4) Find the boundary and interior of each of the following subsets of \mathbb{R}^2 .
 - (a) $A = \{(x, y), y = 0\}$ (b) $B = \{(x, y), x > 0 \text{ and } y \neq 0\}$ (c) $C = A \cup B$ (d) $D = \mathbb{Q} \times \mathbb{R}$ (e) $E = \{(x, y), 0 < x^2 - y^2 \le 1\}$ (f) $F = \{(x, y), x \neq 0 \text{ and } y \le \frac{1}{x}\}$

Note that, except for (d), a picture is very helpful to determine the boundary and interior of the subsets at hand before rigorously justifying the intuition, using what is known about the (metric) topology of \mathbb{R}^2 .

(a) Observe that A is closed, as the complement of $\mathbb{R} \times (-\infty, 0) \cup (0, +\infty)$ which is open as a product of open sets. Another way to see this is to remark that every element of $\mathbb{R}^2 \setminus A$ is of the form (x, y) with $y \neq 0$, and for any $x \in \mathbb{R}$, the basis element

$$V = (x - 1, x + 1) \times \left(y - \frac{|y|}{2}, y + \frac{|y|}{2}\right)$$

satisfies $(x, y) \in V \subset \mathbb{R}^2 \setminus A$.

Moreover, the interior of A is empty: every element of A is of the form (x, 0), any neighbourhood of which contains a basis element $(a, b) \times (c, d)$ with c < 0 < d, which in turn cannot be included in A, for it contains $(x, \frac{d}{2}) \notin A$. We conclude that $\mathring{A} = \emptyset$ and $\partial A = A$.

(b) Note that $B = (0, +\infty) \times (-\infty, 0) \cup (0, +\infty)$ is open as a product of open sets. Another way to see this is to consider $(x, y) \in B$, that is, x > 0 and $y \neq 0$. Then

$$V = \left(\frac{x}{2}, \frac{3x}{2}\right) \times \left(y - \frac{|y|}{2}, y + \frac{|y|}{2}\right)$$

is a neighborhood of (x, y) that is contained in B, which is therefore open. Finally, B is open because it is the inverse image of $\mathbb{R}^2 \setminus A$ open under the continuous map $(x, y) \mapsto (\ln x, y)$.

Let us prove that the closure of B is the closed half-plane R defined by $x \ge 0$. Let V be a neighborhood of $(x, y) \in R$. If $(x, y) \in B$, there is nothing to prove. If xy = 0, then V contains a subset of the form $(a, b) \times (c, d)$ with 0 < b and $cd \ne 0$ so $\left(\frac{x+b}{2}, \frac{y+d}{2}\right)$ or $\left(\frac{x+b}{2}, \frac{y+c}{2}\right)$ belongs to $V \cap B$, which is therefore not empty. We have proved that $R \subset \overline{B}$. The converse inclusion follows from the same argument invoked to prove that $\mathbb{R}^2 \setminus A$ is open.

Since B is open, it follows from (c) in the previous problem that $\partial B = \overline{B} \setminus B$, that is ∂B is the union of the vertical axis and the positive horizontal axis.

⁽c) Since $\overline{A \cup B} = \overline{A} \cup \overline{B}$, it follows form (a) and (b) that $\overline{C} = R \cup A$ consists of the points (x, y) such that $x \ge 0$ or y = 0.

Next, \mathring{C} is the right half-plane $(0, +\infty) \times \mathbb{R}$: this set is open as the product of open sets and it is maximal. Indeed, if $x \leq 0$, then any neighborhood of (x, y) contains a subset of the form $(a, b) \times (c, d)$ with a < 0 and $cd \neq 0$ so $\left(\frac{x+a}{2}, \frac{y+d}{2}\right)$ or $\left(\frac{x+a}{2}, \frac{y+c}{2}\right)$ belongs to $V \cap (\mathbb{R}^2 \setminus C)$, which is therefore not empty.

It follows from the result proved in (a) of the previous problem that $\partial C = \overline{C} \setminus \mathring{C}$ is the union of the vertical axis and the negative horizontal axis.

(d) Every non-empty open interval of \mathbb{R} contains infinitely many rational and irrational numbers, so every product of intervals contains infinitely many elements of D and $\mathbb{R}^2 \setminus D$. Therefore, $\partial D = \mathbb{R}^2$ and, since $\partial D = \overline{D} \setminus D$, it follows immediately that $D = \emptyset$.

(e) First, observe that the set $\Omega = \{(x, y), 0 < x^2 - y^2 < 1\}$ is open, for instance as the inverse image of the open set (0, 1) under the map $(x, y) \mapsto x^2 - y^2$, which is polynomial, hence continuous.

A similar argument, shows that $\Gamma = \{(x, y), 0 \leq x^2 - y^2 \leq 1\}$ is closed. Since $\Omega \subset E \subset \Gamma$, we get the chain of inclusions $\Omega \subset \mathring{E} \subset \overline{E} \subset \Gamma$, hence

$$\partial E = \bar{E} \setminus \check{E} \subset \Gamma \setminus \Omega.$$

In other words, a boundary point (x, y) of E satisfies either $x^2 = y^2$ or $x^2 - y^2 = 1$. Conversely, assume that $x^2 - y^2 = 1$. Every neighbourhood of (x, y) contains the points $P_{\delta} = (x + \delta, y)$ for $\delta \in (-\delta_0, \delta_0)$ with $\delta_0 > 0$. Since

$$(x+\delta)^2 - y^2 = 1 + 2\delta(x+\delta),$$

and the quantity $2\delta(x+\delta)$ takes arbitrarily small positive values when δ runs over $(-\delta_0, \delta_0)$, we see that there are points P_{δ} in $\mathbb{R}^2 \setminus E$ and E so (x, y) is a boundary point of E. One can proceed in the same way to verify that the two lines given by the equation $x^2 = y^2$ are also included in ∂E , which concludes the proof that ∂E consists exactly of the union of the hyperbola with equation $x^2 - y^2 = 1$ and the lines with equations $y = \pm x$.

It also follows that $\mathring{E} = \Omega$. We have already obtained the inclusion $\Omega \subset \mathring{E}$. Conversely, assume that (x, y) is a point in E not in Ω . Then $x^2 - y^2 = 1$ so (x, y) belongs to ∂E which is disjoint from \mathring{E} . This proves that $\mathring{E} \subset \Omega$ and the equality.

(f) No new technique is needed to prove that \mathring{F} is the region located strictly below the branches of the hyperbola with equation xy = 1, that is,

$$\mathring{F} = \left\{ (x, y) \ , \ x \neq 0 \text{ and } y < \frac{1}{x} \right\},$$

and that ∂F is the union of the hyperbola and the vertical axis:

$$\mathring{F} = \left\{ (x, y) , x = 0 \text{ or } y = \frac{1}{x} \right\}.$$