Math 54 Summer 2015 Homework #4: closed sets and limit points

(1) Prove the following result:

Theorem Let X be a set and $\gamma : \mathcal{P}(X) \to \mathcal{P}(X)$ a map such that, for any $A, B \subset X$, (i) $\gamma(\emptyset) = \emptyset$; (ii) $A \subset \gamma(A)$; (iii) $\gamma(\gamma(A)) = \gamma(A)$; (iv) $\gamma(A \cup B) = \gamma(A) \cup \gamma(B)$. Then the family $\{X \setminus \gamma(A), A \in \mathcal{P}(X)\}$ is a topology in which $\overline{A} = \gamma(A)$. *Hint:* it might be useful to prove that $A \subset B \Rightarrow \gamma(A) \subset \gamma(B)$.

- (2) The questions in this problem are independent.
 - (a) Show that a topological space X is Hausdorff if and only if the diagonal $\Delta = \{(x, x), x \in X\}$ is closed in $X \times X$.
 - (b) Determine the accumulation points of the subset $\left\{\frac{1}{m} + \frac{1}{n}, m, n \in \mathbb{Z}_+\right\}$ of \mathbb{R} .
- (3) Treat Problem 17.19 in the textbook.
- (4) Treat Problem **17.20** in the textbook.