
Math 54 Summer 2015
Homework #2: metric spaces - Elements of solution

(1) Balls.
a. Consider Z× Z equipped with the Euclidean metric.

Describe B
(
(3, 2),

√
2
)

and Bc
(
(3, 2),

√
2
)
.

One can enumerate the elements:

B
(

(3, 2),
√

2
)

= {(2, 2); (3, 1); (3, 2); (3, 3); (4, 2)}.

and

Bc
(

(3, 2),
√

2
)

= B
(

(3, 2),
√

2
)
∪ {(2, 1); (2, 3); (4, 1); (4, 3)}

b. Let X be a set equipped with the discrete metric and x in X.
Describe the balls B(x, r) for all r > 0.

By definition, B(x, r) = {x} for 0 < r ≤ 1 and B(x, r) = X for r > 1.

(2) Continuous maps.
a. Prove that the map f defined on R by f(x) = x2 + 1 is continuous.

Let a ∈ R and ε > 0. Note that if a− 1 ≤ x ≤ a + 1, then |x + a| ≤ 2|a|+ 1.
Therefore, since |f(x)− f(a)| = |x− a||x + a|, we get, for x ∈ [a− 1, a + 1],

|f(x)− f(a)| ≤ |x− a|(2|a|+ 1)

and it suffices to choose |x−a| < min{ ε
2|a|+1

, 1} to guarantee |f(x)−f(a)| < ε.

b. Let E1, E2, E3 be metric spaces and u : E2 → E3, v : E1 → E2 be
continuous maps. Prove that u ◦ v is continuous.

Let Ω be open in E3 and apply Theorem [MC] twice: u−1(Ω) is open in E2

by continuity of u and (u ◦ v)−1(Ω) = v−1(u−1(Ω)) is open by continuity of v.

(3) Let (E, d) be a metric space. Prove that a subset Ω ⊂ E is open if and
only if for every point x ∈ Ω, there exists an open ball containing x and
included in Ω.

The definition seen in class for open sets in a metric space differs only by the fact
that it requires the ball to be centered at the point considered. Therefore, open
sets trivially satisfy the property.
Observe that if a point x is included in a ball B(a, r), the triangle inequality implies
that B(x, r − d(a, x)) is included in B(a, r). The converse follows.



(4) Let (E, d) be a metric space and A ⊂ E. A point a in A is called interior
if there exists r > 0 such that any point x in E such that d(a, x) < r is in

A. The set
o

A of interior points of A is called the interior of A.

a. Prove that
o

A is the union of all the open balls contained in A.

Let Ȧ be the union of all the open balls contained in A and let a be in Ȧ.
By definition of Ȧ and the argument used in (3), there exists a ball B(a, r)

included in A, so Ȧ ⊂
o

A. Conversely, let a be in
o

A. By definition, there exists
r > 0 such that B(a, r) ⊂ A so a ∈ Ȧ, hence the result.

b. Prove that
o

A is the largest open subset contained in A.

First,
o

A is open as the union of open subsets, as proved in a. We argue by

contradiction: assume the existence of Ω open such that
o

A  Ω ⊂ A. Let

x ∈ Ω \
o

A. Since x /∈
o

A, no ball B(x, r) with r > 0 is contained in A. Since
Ω is open, it must contain such a ball, which contradicts the assumption that
Ω ⊂ A.

c. Can
o

A be empty if A is not?

Yes: consider for instance A = Z in E = R, or any strict linear subspace of
Rn and observe that every ball centered at the origin must contain a basis.


