Math 54 Summer 2015
Homework \#2: metric spaces - Elements of solution
(1) Balls.
a. Consider $\mathbb{Z} \times \mathbb{Z}$ equipped with the Euclidean metric.

Describe $\mathcal{B}((3,2), \sqrt{2})$ and $\mathcal{B}_{c}((3,2), \sqrt{2})$.
One can enumerate the elements:

$$
\mathcal{B}((3,2), \sqrt{2})=\{(2,2) ;(3,1) ;(3,2) ;(3,3) ;(4,2)\}
$$

and

$$
\mathcal{B}_{c}((3,2), \sqrt{2})=\mathcal{B}((3,2), \sqrt{2}) \cup\{(2,1) ;(2,3) ;(4,1) ;(4,3)\}
$$

b. Let X be a set equipped with the discrete metric and x in X. Describe the balls $\mathcal{B}(x, r)$ for all $r>0$.
By definition, $\mathcal{B}(x, r)=\{x\}$ for $0<r \leq 1$ and $\mathcal{B}(x, r)=X$ for $r>1$.
(2) Continuous maps.
a. Prove that the map f defined on \mathbb{R} by $f(x)=x^{2}+1$ is continuous.

Let $a \in \mathbb{R}$ and $\varepsilon>0$. Note that if $a-1 \leq x \leq a+1$, then $|x+a| \leq 2|a|+1$. Therefore, since $|f(x)-f(a)|=|x-a||x+a|$, we get, for $x \in[a-1, a+1]$,

$$
|f(x)-f(a)| \leq|x-a|(2|a|+1)
$$

and it suffices to choose $|x-a|<\min \left\{\frac{\varepsilon}{2|a|+1}, 1\right\}$ to guarantee $|f(x)-f(a)|<\varepsilon$.
b. Let E_{1}, E_{2}, E_{3} be metric spaces and $u: E_{2} \rightarrow E_{3}, v: E_{1} \rightarrow E_{2}$ be continuous maps. Prove that $u \circ v$ is continuous.
Let Ω be open in E_{3} and apply Theorem [MC] twice: $u^{-1}(\Omega)$ is open in E_{2} by continuity of u and $(u \circ v)^{-1}(\Omega)=v^{-1}\left(u^{-1}(\Omega)\right)$ is open by continuity of v.
(3) Let (E, d) be a metric space. Prove that a subset $\Omega \subset E$ is open if and only if for every point $x \in \Omega$, there exists an open ball containing x and included in Ω.

The definition seen in class for open sets in a metric space differs only by the fact that it requires the ball to be centered at the point considered. Therefore, open sets trivially satisfy the property.
Observe that if a point x is included in a ball $\mathcal{B}(a, r)$, the triangle inequality implies that $\mathcal{B}(x, r-d(a, x))$ is included in $\mathcal{B}(a, r)$. The converse follows.
(4) Let (E, d) be a metric space and $A \subset E$. A point a in A is called interior if there exists $r>0$ such that any point x in E such that $d(a, x)<r$ is in A. The set $\stackrel{o}{A}$ of interior points of A is called the interior of A.
a. Prove that $\stackrel{o}{A}$ is the union of all the open balls contained in A.

Let \dot{A} be the union of all the open balls contained in A and let a be in \dot{A}. By definition of \dot{A} and the argument used in (3), there exists a ball $\mathcal{B}(a, r)$ included in A, so $\dot{A} \subset \stackrel{o}{A}$. Conversely, let a be in $\stackrel{o}{A}$. By definition, there exists $r>0$ such that $\mathcal{B}(a, r) \subset A$ so $a \in \dot{A}$, hence the result.
b. Prove that $\stackrel{o}{A}$ is the largest open subset contained in A.

First, ${ }^{\circ}$ is open as the union of open subsets, as proved in a. We argue by contradiction: assume the existence of Ω open such that ${ }^{o} A \varsubsetneqq \Omega \subset A$. Let $x \in \Omega \backslash \stackrel{o}{A}$. Since $x \notin \stackrel{o}{A}$, no ball $\mathcal{B}(x, r)$ with $r>0$ is contained in A. Since Ω is open, it must contain such a ball, which contradicts the assumption that $\Omega \subset A$.
c. Can $\stackrel{\circ}{A}$ be empty if A is not?

Yes: consider for instance $A=\mathbb{Z}$ in $E=\mathbb{R}$, or any strict linear subspace of \mathbb{R}^{n} and observe that every ball centered at the origin must contain a basis.

