Math 54 Summer 2015 Homework #2: metric spaces - Elements of solution

(1) **Balls.**

a. Consider $\mathbb{Z} \times \mathbb{Z}$ equipped with the Euclidean metric. Describe $\mathcal{B}((3,2),\sqrt{2})$ and $\mathcal{B}_c((3,2),\sqrt{2})$.

One can enumerate the elements:

$$\mathcal{B}\left((3,2),\sqrt{2}\right) = \{(2,2); (3,1); (3,2); (3,3); (4,2)\}$$

and

$$\mathcal{B}_{c}\left((3,2),\sqrt{2}\right) = \mathcal{B}\left((3,2),\sqrt{2}\right) \cup \{(2,1);(2,3);(4,1);(4,3)\}$$

b. Let X be a set equipped with the discrete metric and x in X. Describe the balls $\mathcal{B}(x,r)$ for all r > 0.

By definition, $\mathcal{B}(x,r) = \{x\}$ for $0 < r \le 1$ and $\mathcal{B}(x,r) = X$ for r > 1.

(2) Continuous maps.

a. Prove that the map f defined on \mathbb{R} by $f(x) = x^2 + 1$ is continuous.

Let $a \in \mathbb{R}$ and $\varepsilon > 0$. Note that if $a - 1 \le x \le a + 1$, then $|x + a| \le 2|a| + 1$. Therefore, since |f(x) - f(a)| = |x - a||x + a|, we get, for $x \in [a - 1, a + 1]$,

$$|f(x) - f(a)| \le |x - a|(2|a| + 1)$$

and it suffices to choose $|x-a| < \min\{\frac{\varepsilon}{2|a|+1}, 1\}$ to guarantee $|f(x) - f(a)| < \varepsilon$.

b. Let E_1, E_2, E_3 be metric spaces and $u : E_2 \to E_3, v : E_1 \to E_2$ be continuous maps. Prove that $u \circ v$ is continuous.

Let Ω be open in E_3 and apply Theorem [MC] twice: $u^{-1}(\Omega)$ is open in E_2 by continuity of u and $(u \circ v)^{-1}(\Omega) = v^{-1}(u^{-1}(\Omega))$ is open by continuity of v.

(3) Let (E, d) be a metric space. Prove that a subset $\Omega \subset E$ is open if and only if for every point $x \in \Omega$, there exists an open ball containing x and included in Ω .

The definition seen in class for open sets in a metric space differs only by the fact that it requires the ball to be centered at the point considered. Therefore, open sets trivially satisfy the property.

Observe that if a point x is included in a ball $\mathcal{B}(a, r)$, the triangle inequality implies that $\mathcal{B}(x, r - d(a, x))$ is included in $\mathcal{B}(a, r)$. The converse follows.

- (4) Let (E,d) be a metric space and A ⊂ E. A point a in A is called *interior* if there exists r > 0 such that any point x in E such that d(a, x) < r is in A. The set A of interior points of A is called the *interior of* A.
 - a. Prove that $\overset{o}{A}$ is the union of all the open balls contained in A.

Let \dot{A} be the union of all the open balls contained in A and let a be in \dot{A} . By definition of \dot{A} and the argument used in (3), there exists a ball $\mathcal{B}(a,r)$ included in A, so $\dot{A} \subset \overset{o}{A}$. Conversely, let a be in $\overset{o}{A}$. By definition, there exists r > 0 such that $\mathcal{B}(a,r) \subset A$ so $a \in \dot{A}$, hence the result.

b. Prove that $\overset{o}{A}$ is the largest open subset contained in A.

First, A is open as the union of open subsets, as proved in **a**. We argue by contradiction: assume the existence of Ω open such that $A \subsetneq \Omega \subset A$. Let $x \in \Omega \setminus A$. Since $x \notin A$, no ball $\mathcal{B}(x,r)$ with r > 0 is contained in A. Since Ω is open, it must contain such a ball, which contradicts the assumption that $\Omega \subset A$.

c. Can \tilde{A} be empty if A is not?

Yes: consider for instance $A = \mathbb{Z}$ in $E = \mathbb{R}$, or any strict linear subspace of \mathbb{R}^n and observe that every ball centered at the origin must contain a basis.