- (1) **Balls.** No proof is required for this problem.
 - **a.** Consider $\mathbb{Z} \times \mathbb{Z}$ equipped with the Euclidean metric. Describe $\mathcal{B}((3,2),\sqrt{2})$ and $\mathcal{B}_c((3,2),\sqrt{2})$.
 - **b.** Let X be a set equipped with the discrete metric and x a point in X. Describe the balls $\mathcal{B}(x, r)$ for all r > 0.

(2) Continuous maps.

- **a.** Prove that the map f defined on \mathbb{R} by $f(x) = x^2 + 1$ is continuous.
- **b.** Let (E_1, d_1) , (E_2, d_2) , (E_3, d_3) be metric spaces and $u : E_2 \to E_3$, $v : E_1 \to E_2$ be continuous maps. Prove that $u \circ v$ is continuous.
- (3) Let (E, d) be a metric space. Prove that a subset $\Omega \subset E$ is open if and only if for every point $x \in \Omega$, there exists an open ball containing x and included in Ω .
- (4) Let (E, d) be a metric space and A ⊂ E a subset. A point a in A is called *interior* if there exists r > 0 such that any point x in E such that d(a, x) < r is in A. The set of interior points of A is called the *interior of A* and denoted by A.
 - **a.** Prove that $\overset{\mathbf{o}}{A}$ is the union of all the open balls contained in A.
 - **b.** Prove that $\overset{\circ}{A}$ is the largest open subset contained in A.
 - **c.** Can $\stackrel{\mathbf{o}}{A}$ be empty if A is not?