
Dynamical Behavior of Cellular Automata

Miles Kenyon and Matthew Driscoll

December 4, 2009

1 Introduction

Cellular Automata are simple computational models which can be leveraged to model a wide

variety of dynamical systems. Composed of a lattice of discrete cells that take finite number

of states based on previous iterations these models differ greatly from dynamic systems that

vary continuously in space or time. However given their ability to model many of continuous

systems, it could be postulated that certain cellular automata exhibit chaotic dynamics. This

paper examines the the chaotic analysis of a specific class of Cellular Automata, Elementary

Cellular Automata (ECA), using the Lyapunov Exponent as our primary measure of chaos.

The Lyapunov Exponent for these cellular automata does not have a standardized definition,

given the unique nature of this model and its relative youth as an area of study. We focused

on two methods used to calculate the Lyapunov Exponent, both of which generally define

the Lyapunov Exponent to be the rate of error propagation in time, yet differ in specific

method. Given these two theoretical frameworks we stove to create an efficient numerical

application to calculate the Lyapunov Exponent of ECA of arbitrary rule number.

2 Elementary Cellular Automata

Cellular Automata are computational models comprised of a set of cells which evolve in

discrete time steps through a finite number of states governed by the states of neighboring

cells. For simplicity’s sake we only analyzed a subset of this class of models, referred to

as Elementary Cellular Automata. This subset is composed of one dimensional cellular

automata where the state of a given cell is governed only by the previous states of the cell

itself and its two immediate neighbors, further we will restrict the number of accessible states

to 2. This results in a set of 256 possible rules, that is 256 distinct manners in which cells

evolve.

1



Though this class seems arbitrarily limited, extremely intricate dynamic behavior can occur.

Steven Wolfram studied cellular automata extensively and developed a system of classes to

describe the dynamics of elementary cellular automata: [3]

I Evolves to homogeneous state.

II Evolves to simple, separated periodic structures.

III Yields chaotic aperiodic patterns.

IV Yields chaotic pattern of localized structure.

Rules 90, 30, and 110 demonstrate the behavior of classes 2, 3, and 4 respectively. We

will use these rules as examples of some of the types of behavior we set out to classify and

analyze.

2.1 Rule 90

Rule 90 generates the Sierpinski Gasket, that is a fractal composed of self similar equilateral

triangles. The following image was generated using a single “on” cell as an initial state for

rule 90 by our vectorized ECA code:

Despite the highly regular structure, this complexity of the pattern seems to lend to a high

level of error propagation under perturbation, regulated structure might then not be directly

related to chaotic behavior.

2



2.2 Rule 30

Rule 30 seems to have little or no structure on initial inspection, this is consistent with class

III cellular automata which ought to yeild “chaotic, aperiodic patterns” The following figure,

also generated with our vectorized ECA code, illustrates the disordered nature of Rule 30

and Class III ECA.

Ultimately we can confirm the chaotic nature of this rule with both of our methods of

calculation.

2.3 Rule 110

Rule 110 is an incredibly interesting example of the wildly complicated dynamics that can

be found in ECA. Rule 110 is Class IV, and therefore characterized by randomized areas

of local structure. This specific Rule has further been proven to be Turing Complete, that

is capable of universal computation, any computable operation can be encoded in a set of

initial conditions.

3



We confirm that this rule is also chaotic in general structure, and that error propagates

quickly.

3 Shreshevsky Lyapunov Exponent

3.1 Theory

To begin the discussion of Shereshevsky’s development of Lyapunov exponents for ECA, we

must fix a mathematical framework for discussion. Consider the set S = {0, 1} of possible

states that each cell in the ECA may take on. We let X = SZ be the set al all bi-infinite

sequences of 0 and 1, and call x ∈ X a configuration, where x = (xi)i∈Z. X along with the

product topology is the configuration space for the CA (similarly, Tisseur develops a natural

metric for X [?]), and we define a function F : S3 7→ S to be the rule for state switching for

the given ECA. Finally, define a function f : X 7→ X by

(fxi) = F (xi−1, xi, xi+1) [1]

The ECA can then be considered as an ordered double (f,X)

Shereshevsky then proceeds to define two sets, W+
s (x) and W−

s (x), where W+
s (x) = {y ∈ X :

yi = xi∀i ≥ s}. Intuitively, if we fix a configuration x,W+
s (x) is the set of all configurations in

X that are identical to x to the right of and including the sth cell. W−
s (x) is defined similarly

as the set of configurations in X that are identical to the left of the sth cell, inclusively. He

then goes on to define

4



Λ̃+
n (x) = min{s ≥ 0 : fn(W+

0 (x)) ⊂ W+
s (fnx)}

Λ̃−n (x) = min{s ≥ 0 : fn(W−
0 (x)) ⊂ W−

s (fnx)}

W+
0 (x) and W−

0 (x) can be thought of as the set of all perturbations of x to the left and

right of x0, respectively. Λ̃+
n (x) then measures the distance that the perturbations propagate

through x after n iterations of f in a manner that will be explained when our methods

of numerical calculations are outlined. It may seem natural to take the limit of Λ̃+
n (x)

divided by the number of iterations of f on x to be the average rate of propagation of the

perturbations through x. However, we run into difficulties when considering the fact that

such propagations may not travel the same distance if their front is located elsewhere than

x0. By introducing the shift operator τ we may construct a Lyapunov exponent of x that

does not depend on where we perturb x. If we let (τ jx)i = xi+j, then shift invariance is

introduced to the exponent by setting

Λ+
n (x) = maxj∈Z Λ̃+

n (τ jx) Λ−n (x) = maxj∈Z Λ̃−n (τ jx)

Finally, Shereshevsky gives the following theorem:

Theorem: The definition of Lyapunov exponents (Shereshevsky, 1992). Fix a

probability measure µ on the configuration space X. There exists a set G ⊂ X, where µ(G)

= 1, such that for every x ∈ G the limits

λ+(x) = limn→∞
1

n
Λ+

n (x) λ−(x) = limn→∞
1

n
Λ−n (x)

exist. The functions λ+(x), λ−(x) are called the left and right Lyapunov exponents of the

cellular automaton (f,X) at x

[1]

Shereshevsky includes µ in order to prove the existence of the above limits, but makes no

reference to the nature of µ other than it’s being a probability measure. For the purposes

of our calculations, all x that we measured had a finite number of ones in the initial con-

figurations, and we postulate that such a condition generates the subset G of X for which

the Theorem holds for ECA, which fits with the µ set forth in [2]. Shereshevsky extends his

discussion of right and left Lyapunov exponents for CA by specifying conditions on µ for

which λ+ and λ− are constant for almost every x. [1]

3.2 Numerical Estimation and Procedure

In order to numerically estimate λ+ and λ− a few immediate simplifications must be made

in the calculation of Λ̃±, namely:

5



1. Computation must occur on a finite grid rather than across an infinite state space

2. As a consequence of (1), a finite subset of W±
0 must be used in the calculation of Λ̃±

Condition (1) is supplemented by the provision that the boundary of the space be modeled

as cells that are always zero. Calculations are aided by the fact that, given a configuration

comprising a finite subsequence of ones and zeros within a bi-infinite sequence of zeros, an

ECA will never grow the subsequence by more than one cell in the positive and negative

directions upon successive iterations. With that in mind, we may initialize the calculation

space as a finite grid of cells the width of the subsequence plus twice the number of planned

iterations, and height set as the number of iterations (so that the horizontal axis can be

thought of as a space dimension of the grid, and the vertical axis the time dimension. For

convention’s sake, we take the top row of the space to be time zero, and the middle of the

original subsequence to be the spatial origin). If x±i are the sites of the cells on the boundary

of the space for any time t, we perform our calculations is such a way that xi+1 and x−i−1

are zeros.

Condition (2) is employed by randomly generating perturbations of finite length on a fixed

subsequence. Iterating the ECA on such perturbations gives a finite subset of fn(W±
0 (x)).

For convenience’s sake, we may assume that fn(x) ∈ fn(W±
0 (x) so that to calculate s such

that fn(W±
0 (x)) ⊂ W±

s (fnx), we do the following (method outlined for ˜Lambda
+

(x)):

1. Calculate fn(W+
0 (x)) and choose some element to be fn(x).

2. Begin at the right-boundary of the state space at time n, and step leftward.

3. Note the first position i ≥ 0 where (x′)i 6= (x)i and x′ ∈ fn(W+
0 (x)).

Taking the maximum of all such i and adding 1 is then the s desired. This can be visualized

as the first cell in which, after iterating all perturbations n times, all successive cells in each

element of fn(W+
0 (x)) are equal. By taking this cell’s distance from f(x0), we have measured

how far the right-moving ”perturbation front” has traveled after n iterates. To calculate Λ̃−

a similar method is employed, but with the left-moving perturbation front fn(W−
0 (x)), and

counting the cell differences from the left-hand boundary.

To introduce τ invariance and thus calculate Λ±n (x), we repeat this process for the front

located at each position xi within the original finite subsequence. Finally, we sample our

estimations of Λ±n (x) for a fixed number of n and plot these against n in R2. We take

the slope of the regression curve fit to these data points to be our final estimation of λ±.

Future research should consider further investigation into the statistical properties of ECA

so that we may better estimate the number of needed perturbations and the size of the

finite subsequences for our calculations, as well as how many iterations and at what sizes

6



we should sample Λ±n (x) to give an adequate estimation of λ±(x). As for now, we set our

initial conditions to be a randomly generated sequence of evenly distributed ones and zeros

of length between three and thirteen, with eight perturbations of this configuration. It may

be the case that fewer perturbations are needed, and different distributions may lead to

different results. However, all such configurations converge after 100-200 iterations of the

ECA, most to either zero or one, with a small subset of ECA rules leading to conditions to

converge to λ± = .5.

4 Wolfram Lyapunov Exponent

4.1 Theory

Stephen Wolfram proposed a somewhat simpler method for calculating the Lyapunov Ex-

ponent of ECA. Wolfram similarly equates the Lyapunov Exponents of ECA to the rate of

information transmission through a cellular automaton. His method of generating perturba-

tions is much simpler than that of Sherevsky.

This Lyapunov Exponent can be estimated by reversing a single cell in an arbitrary initial

state. By then plotting the cells where the cellular automata differ it is possible to calculate

an average rate of transmission of the perturbation. This is simply the rate at which the

perturbation propagates from the single perturbed cell, visually it is the slope of the two

edges of the propagating error:

there will then be clearly two values as the perturbation can propagate in both the positive

7



and negative “x” direction as the automaton steps through time. Similar to the Shreshevsky

method above we will refer to the left Lyapunov Exponent as λ− and the right Lyapunov

Exponent as λ+.

The result of any single run of this method is highly variable given the dependence on initial

conditions. We conjecture that taking the mean lyapunov exponent over many repeated

iterations of this method using a randomly generated initial states would allow us to estimate

the Lyapunov Exponent as the number of samples goes to infinity.

4.2 Numerical Estimation

Generally our algorithm to compute this Lyapunov Exponent was much simpler than that

employed for the Shershevsky method. We generated the sample ECA using the method

described above, with the horizontal axis as a single spatial dimension, and the vertical axis

as a time dimension, with each iteration being a single time step with the initial state set as

t = 0.

Using a randomly generated string as an initial state we generated an ECA, then switched the

state of the x = 0 cell of the initial string. By superimposing these two ECAs and recording

all cells where states differed, we were able to generate a matrix in which contained the error

propagating through time. By measuring the displacement of error from the spatial origin

in both directions we can generate a rough estimate for the Lyapunov Exponent, we ran this

code an arbitrary number of times and took a simple average of our results for any single

CA.

4.3 Analysis

Our simple statistical estimate of Lyanpunov Exponent using the Wolfram method seemed to

generally match our results from the Shreshevsky method, both methods generally indicated

that ECA either exhibit strongly chaotic behavior and error propagates with velocity equal

to that of the general structure, that is the λ± = 1, or that variance in initial conditions

did not effect general sturcture and the Lyapunov Exponent was λ± = 0. There were a

handful of interesting rules which took on intermediate values, however we cannot effectively

comment on the actual values of these Lyapunov Exponents given the simplicity of our

method of estimation of the Wolfram method. In taking a simple mean, we discount any

behavior where a given error structure falls back more than one cell in a single time step.

Wolfram accounts for this behavior through constructing a Green’s function based on the

specific rule being examined, this method however was beyond the scope of this project. We

8



will postulate that these intermediate values would converge to .5 given an effective means

of analysis.

5 Conclusions

In our analysis of the dynamic behavior of ECA we were able to make some general obser-

vations concerning the chaotic behavior of randomly generally configurations of individual

rules. While Lyapunov Exponents are ultimately a local property of specific configurations

we found that most random configuration within each rule converge to a similar value. Fur-

ther the vast majority of rules generate Lyapunov Exponents of approximately 0 or 1. This

indicates that initial perturbations will most often either propagate with speed 1, that is

to say propagate with the same speed as the general structure or not propagate at all. We

must also note that there is a fairly distribution between rules which propagate in both, one

of two, or no spatial directions. We also observed that certain rules had either a left or right

Lyapunov Exponent that seemed to approach .5. The following figures show the distribution

of left and right Lyapunov Exponents calculated using the Shreshevsky method. The first

shows positive and negative exponents plotted against their rule number, while the second

collapses the rule number dimension. Negative exponents are an artifact of error generated

on the boundary conditions.

9



10



Though Shreshevsky’s theory is well developed there is little hard data by which to judge

our numerical results. We were loosely compare our results to the simpler Wolfram method

and generally confirmed our result.

We extend Shreshevsky’s condition for the probability measure on the state space in his

proof of the convergence of the limits defining the Lyapunov exponents to postulate that the

set for which the limits converge is the set of all configurations with a finite number of ones

(or zeros). This may be tested by adding a noise term along the boundary that imitates the

effects of an infinite initial state interacting with our finite defined configuration. We suspect

that the left and right Lyapunov exponents under such conditions would not converge.

6 Code

6.1 Cellular Automata Generator

function CA = one dim CA(rule num, input vec, iteration num)

bin = dec2bin(rule num) − 48;

if length(bin) 6= 8

a = 8 − length(bin);

bin = [zeros(1,a),bin];

end

CA = zeros(1+iteration num, length(input vec)+2*iteration num);

CA(1,iteration num+1:iteration num+length(input vec)) = input vec;

for m = 1:iteration num

x = [0 CA(m,1:end−1)]*4 + 2*CA(m,:) + [CA(m,2:end) 0];

CA(m+1,:) = bin(8 − x);

end

end

6.2 CA Plot Function

function CA = CAdraw(rule num, input vec, iteration num)

11



bin = dec2bin(rule num)*1−48;
if length(bin) 6= 8

a = 8 − length(bin);

bin = [zeros(1,a),bin];

end

CA = zeros(1+iteration num, length(input vec)+2*iteration num);

CA(1,iteration num+1:iteration num+length(input vec)) = input vec;

for m = 1:iteration num

x = [0 CA(m,1:end−1)]*4 + 2*CA(m,:) + [CA(m,2:end) 0];

CA(m+1,:) = bin(8−x);
end

imagesc(CA)

colormap gray

disp('See figure')

end

6.3 Positive Lyapunov Exponent Calculation

function h = lyapCA plus(rule num, input vec, iteration vec)

w = length(input vec);

t = length(iteration vec);

initial = cell(1,w);

pet num = 8;

S = zeros(w,t);

for z = 1:w

for i = 1:pet num

initial{z}(i,:) = [round(rand(1,w−1)), input vec(z:end)];

end

p = size(initial{z});
CA = zeros(1+max(iteration vec), p(2)+2*max(iteration vec),p(1));

for j = 1:p(1)

CA(:,:,j) = one dim CA(rule num, initial{z}(j,:),max (iteration vec));

end

q = size(CA);

s = zeros(pet num, q(2));

12



for iteration num = iteration vec

for n = 1:pet num

s(n,:) = CA(iteration num,:,1) 6= CA(iteration num,:,n);

end

m = sum(s);

r = find(m>0);

if isempty(r)

S(z, iteration num == iteration vec) = 0;

elseif r(end) ≥ ceil(q(2)/2)

S(z, iteration num == iteration vec) = r(end) − ceil(q(2)/2);

end

end

end

lambda = max(S);

fitline = polyfit(iteration vec,lambda,1);

subplot(2,1,1)

imagesc(one dim CA(rule num, input vec, max(iteration vec)))

colormap gray

x = polyval(fitline, [0:.5:max(iteration vec)]);

subplot(2,1,2)

plot(iteration vec, lambda, 'cx', [0:.5:max(iteration vec)], x, 'k−')

h = fitline(1);

end

6.4 Negative Lyapunov Exponent Calculation

function h = lyapCA minus(rule num, input vec, iteration vec)

w = length(input vec);

t = length(iteration vec);

initial = cell(1,w);

pet num = 8;

S = zeros(w,t);

for z = 1:w

for i = 1:pet num

initial{z}(i,:) = [input vec(1:z), round(rand(1,w−1)) ];

13



end

p = size(initial{z});
CA = zeros(1+max(iteration vec), p(2)+2*max(iteration vec),p(1));

for j = 1:p(1)

CA(:,:,j) = one dim CA(rule num, initial{z}(j,:),max (iteration vec));

end

q = size(CA);

s = zeros(pet num, q(2));

for iteration num = iteration vec

for n = 1:pet num

s(n,:) = CA(iteration num,:,1) 6= CA(iteration num,:,n);

end

m = sum(s);

r = find(m>0);

if isempty(r)

S(z, iteration num == iteration vec) = 0;

elseif r(1) ≤ ceil(q(2)/2)

S(z, iteration num == iteration vec) = ceil(q(2)/2)− r(1);

end

end

end

lambda = max(S);

fitline = polyfit(iteration vec,lambda,1);

subplot(2,1,1)

imagesc(one dim CA(rule num, input vec, max(iteration vec)))

colormap gray

x = polyval(fitline, [0:.5:max(iteration vec)]);

subplot(2,1,2)

plot(iteration vec, lambda, 'cx', [0:.5:max(iteration vec)], x, 'k−')

h = fitline(1);

end

6.5 Wolfram Lyapunov Exponent Calculation

14



function h = lyapcode(rule num, input vec, iteration vec)

x= [0 0 0; 1 0 0; 0 1 0; 0 0 1; 1 1 0; 1 0 1; 0 1 1; 1 1 1];

y = input vec;

for i = 1:8

initial(i,:) = [x(i,:) y];

end %creates peturbations

p=size(initial);

S = zeros(1,length(iteration vec));

for iteration num = iteration vec

CA = zeros(1+iteration num, p(2)+2*iteration num);

for j = 1:p(1)

CA(:,:,j) = one dim CA(rule num, initial(j,:), iteration num);

end %generates array of CA for each peturbation

q = size(CA);

r = [];

for n = 1:ceil(q(2)/2)

r = CA(end, (end+1) − n, 1);

for m = 1:length(x)

if CA(end, (end+1)−n, m) 6= r

S(iteration vec == iteration num) = (q(2)+2−n) −ceil(q(2)/2);
break

end

end

if S(iteration vec == iteration num) 6= 0

break

end

end

h = zeros(1,length(iteration vec));

for l = 1:length(iteration vec)

h(l) = S(l)/iteration vec(l);

end

end

S

h

end

15



References

[1] M. A. Shreshevsky. Lyapunov exponents for one-dimensional cellular automata. Journal

of Nonlinear Science, 2:1–8, 1992.

[2] P. Tisseur. Cellular automata and lyapunov exponents.

[3] Stephen Wolfram. Statistical mechanics of cellular automata. Reviews of Modern Physics,

55(3), July 1983.

[4] Stephen Wolfram. Twenty problems in the theory of cellular automata. Physica Scripta,

T9:170–183, 1985.

[5] Stephen Wolfram. Random sequence generation by cellular automata. Advances in

Applied Mathematics, 7:123–169, 1986.

[6] Stephen Wolfram. Theory and Applications of Cellular Automata, volume 1 of Advanced

Series on Complex Systems. World Scientific Publishing Company, 1986.

16


	Introduction
	Elementary Cellular Automata
	Rule 90
	Rule 30
	Rule 110

	Shreshevsky Lyapunov Exponent
	Theory
	Numerical Estimation and Procedure

	Wolfram Lyapunov Exponent
	Theory
	Numerical Estimation
	Analysis

	Conclusions
	Code
	Cellular Automata Generator
	CA Plot Function
	Positive Lyapunov Exponent Calculation
	Negative Lyapunov Exponent Calculation
	Wolfram Lyapunov Exponent Calculation


