Ali Lavine Barnett
MATHS53 3 December 2009

Chaos, Fractals, and Art

This project was aimed at pursuing research in the relatively new field of chaos, fractals,
and art. The goals were to explore the idea of using fractals to generate art, to study fractal
dimensions of art and natural images that possess self-similarity, and to use an Iterated Function
System (IFS) to create fractal art.

Though the term fractal was not coined until the 1970’s, “art has always been fractal. The
science of chaos is helping to newly define an aesthetic that has always lain beneath the changing
artistic ideas of different periods, cultures, and schools.” Long before the formal study of chaos
arose, such fractal images existed and were captured in various art forms, such as “The Great
Wave off Kanagawa” by Katsushika Hokusai shown in Fig 1. This Japanese painter managed to
capture “all these aspects of the fractal world we’re about to enter” as early as the eighteenth
century in an image that shows clear self-similarity."
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FIG. 1: “The Great Wave off Kanagawa” by Katsushika Hokusai, ca. 1830-1832"
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FIG. 2: cropped section of wave in Fig. 1 FIG. 3: 2D boxcount slope of fractal
binarized to input in MATLAB outline in Fig 2.

After selecting the rectangular section of Fig. 1 that exhibits the fractal properties of self-
similarity, MATLAB was used to create a binarized version of the image (Fig. 2) where any
pixel above a certain threshold of color intensity was passed through as a one (true, shown in
white) and the pixels below the threshold were passed through as a zero (false, shown in black).
Passing this image through F. Moisy’s boxcount package, boxcount.m, (in Appendix A)



outputted Fig. 3, the two-dimensional boxcounting slope of the fractal image shown in Fig 2.
Using this code, the fractal dimension of the wave in Hokusai’s painting was calculated to be
1.7264 + 0.093, clearly in the chaotic realm since the closest space-filling dimension is two.

Continuing on the path of finding fractals in old works of art, one might come across
abstract artist Jackson Pollock, famous for his unique style. Though the art and math world has
seen much controversy over the claims that Pollock’s work exhibits chaotic properties, scientist
Richard P. Taylor found one way to prove the existence of a fractal dimension in Pollock’s “Blue
Poles: Number II”” shown in Fig. 4.

Taylor “started the investigation by scanning a Pollock painting into the computer; he then
covered it with a computer-generated mesh of identical squares. By analyzing, which squares
were occupied by the painted pattern and which were empty, he was able to calculate the
statistical qualities of the pattern. And by reducing the square size he was able to look at the
pattern at what amounts to a finer magnification."” MATLAB was used to confirm Taylor’s
findings. Fig. 5 was created to simulate the test Taylor created by finding a threshold that
separated light strokes from dark; passing this through boxcount.m revealed a fractal dimension
of roughly 1.8.

FIG. 5: binarized version of Fig. 4

The overlapping field of art and chaos continued to evolve past the fractal properties seen
in various works in art history; the field has been supported by continuous exploration from both
scientists and artists alike. For example, “Gottfried Mayer-Kress of the Santa Fe Institute is one
of the world’s experts on nonlinear systems” who collaborated with graphic designer Jenifer
Bacon. Together they studied an equation that is “used to model the behavior of subatomic
particles,” and developed a “portrait of [this] nonlinear equation.” The image depicts the
immense range of behavior of a system that exhibits sensitive dependence on initial conditions



(electronic copy of image not found. See Briggs’ text for picture).” However, while Brigg’s book
exemplifies a product of collaboration between the scientific and artistic worlds, the author
provides no background on the actual math involved.

Artist Jenifer Bacon supplied an article entitled “Collaboration” from the magazine /RIS
Universe (in Appendix B) that describes a bit more of both the scientific and artistic processes
involved in the Mayer-Kress and Bacon collaboration. Included in the article is an abstract
landscape that Bacon calls “Canyons and Mesas,” Fig. 6. Interestingly though, the image was
“originally conceived in the context of the ‘beam-beam interactions’ of interacting storage rings
in particle physics.””

FIG. 6: Bacon’s “anyons and Mesas” Ca.1990 FIG. 7: Binarized version of Fig. 6 for
Product of collaboration with Dr. Mayer-Kress. use in MATLAB boxcount.m

Again using a binarized version of the image as the input (Fig. 7), MATLAB was used to
compute numerical values that characterize the chaotic properties of “Canyons and Mesas.” Fig.
8 shows a graph of the number of boxes N as a function of the box size r for the fractal input
(blue) as compared to the space-filling box count shown in red. The slope of the blue graph is
displayed in Fig. 9, where the plateau region of the boxcount slope shows the fractal dimension,
1.7926 + 0.032.
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FIG. 8: Number of boxes N as a function of box size r FIG. 9: Slope of N(r). Fractal dimension
N(r) of image in blue. N(r) space-filling dimension in red. taken from plateau region.

Furthermore, fractal geometry has appeared in a wide range of works by various artists
using different mediums. John Lewis used fractal graphics to create a chaos landscape in his
animated short film Aliens."" Photographer Lawrence Hudetz captures “the fractal shapes of
chaos,” while colleague Joseph Cantrell “describes photographing nature as a process of
sensitizing himself to the subtle movements of nature’s creative chaos.”"”” Though the
photographers do not create these chaotic images, they capture amazing self-similar patterns
found in nature.



An example of one such fractal created by natural means is the glue fractal shown in Fig.
10, which was “formed by pulling two glue-covered acrylic sheets apart. The air travels in the
direction the horns are pointing, creating dendritic structures into the glue in an effort to equalize
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the pressures in the room and between the sheets.

FIG. 10: Naturally created fractal of art patterns formed FIG. 11: Binarized center section of Fig. 10.
when pulling apart two glue-covered sheets.

Analyzing the binarized central piece shown in Fig. 11 revealed a fractal dimension of 1.77.
Even without the use of MATLAB, the glue image shows clear patterns of self-similarity in the
branching patterns of the air’s path.

Turning from natural to computer-generated images, Clifford Pickover, author of
Computers Pattern Chaos and Beauty, delves a bit more into the mathematical and computer
graphical side of the chaotic art world. Pickover claims, “Not only can computers and graphics
be used in counting and measuring, but they also are of enormous help in producing visual art.”
He illustrates system behavior of functions such as z > z' — / and z & z° + u in graphic images.
Briggs quotes Pickover on computers and art: “The computer is a tool that lets artists,
mathematicians and scientists see unexpected and strange new worlds that they couldn’t have
appreciated before. It also lets nonartists participate in what we might call art. Art critics might
not call it art, but the works I do are, to me, in the realm of art.*”

For example, Martin Pfingstl used the software ChaosPro 3.3 to produce a fractal art
image from a section of the Mandelbrot Set between (-0.77016296, -0.115948491) and
(-0.77211609, -0.114483641), called “Galaxy of Galaxies”, shown in Fig. 12.
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FIG. 12: Mandelbrot Set between FIG. 13: Binarized version of Fig. 12 FIG. 14: N(r) of Fig. 13
(-0.77016296, -0.11594849i) and
(-0.77211609, -0.114483641)

The discrepancy between the two lines in Fig. 13 confirms the visible fractal properties of
“Galaxy of Galaxies.” The fractal dimension was calculated to be 1.6218 + 0.072.

Michael Barnsley’s book, Fractals Everywhere, presents the equations and variable
parameters used in Iterated Function Systems (IFS) to create fractal images in simple computer
programs. Equation 1 shows the equation for an IFS of an affine map
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where j = 1,2,3,4, and the probability p of w; + w, + w3 + wy = 1. The values and probabilities
used in creating a fractal fern (Fig. 15) are shown in Table I, a fractal tree (Fig. 16) in Table II,
and a fractal castle (Fig. 17) in Table III. Tables are taken from Barnsley’s book.™ The
MATLAB code used can be found in Appendix C.

Table I: IFS code for a Fern.

W a b c d e i

1 0 0 0 0.16 [0 0 0.01

2 0.85 10.04 |-0.04 [0.85 |0 1.6 0.85

3 0.2 -0.26 [0.23 0.22 |0 1.6 0.07

4 -0.15 10.28 [0.26 [0.24 |0 44 0.07

Table I1: IFS code for a Fractal Tree FIG. 15: Fractal Fern
W a b c d e f p

1 0 0 0 0.5 o 0 0.05
2 0.42 0.42 042 (042 [0 0.2 0.4 0
3 0.42 1042 [-0.42 042 [0 0.2 0.4
4 0.1 [0 0 0.1 0 02 |o.15 N
Table III: IFS code for a Fractal Castle.

W |a b c d e i p

1 0.5 0 0 0.5 0 0 0.25

2 0.5 0 0 0.5 2 0 0.25

3 0.5 0 0 0.5 0 1 0.25

4 0.4 0 0 0.4 2 1 0.25

FIG. 17: Fractal Castle

In conclusion, the magnitude of the field of chaos and art is expansive. Though a newly
researched theory, ideas of chaos clearly prevailed even before characteristic terms were
invented to describe such properties found in various art forms. From paintings, old and new, to
image found in nature and those created on the computer artwork has experienced a fair share of
influence from chaos theory and it’s mathematical background. In return, scientists and
mathematicians have added to art history by recognizing the artistic dimensions of chaotic,
fractal images.



Appendix A
Boxcount.m

function [n,r] = boxcount(c,varargin)
%BOXCOUNT Box-Counting of a D-dimensional array (with D=1,2,3).

% [N, R]=BOXCOUNT(C), where C is a D-dimensional array (with D=1,2,3),
% counts the number N of D-dimensional boxes of size R needed to cover
% the nonzero elements of C. The box sizes are powers of two, i.e.,

% R=1,2,4..2"P, where P is the smallest integer such that

% MAX(SIZE(C)) <= 2"P. If the sizes of C over each dimension are smaller
% than 2”P, C is padded with zeros to size 2P over each dimension (e.g.,

% a320-by-200 image is padded to 512-by-512). The output vectors N and R
% are of size P+1. For a RGB color image (m-by-n-by-3 array), a summation
% over the 3 RGB planes is done first.

%

% The Box-counting method is useful to determine fractal properties of a

% 1D segment, a 2D image or a 3D array. If C is a fractal set, with

% fractal dimension DF <D, then N scales as R*(-DF). DF is known as the
% Minkowski-Bouligand dimension, or Kolmogorov capacity, or Kolmogorov
% dimension, or simply box-counting dimension.

%

% BOXCOUNT(C,'plot') also shows the log-log plot of N as a function of R
% (if no output argument, this option is selected by default).

%

% BOXCOUNT(C,'slope') also shows the semi-log plot of the local slope

% DF = - dInN/dInR as a function of R. If DF is contant in a certain

% range of R, then DF is the fractal dimension of the set C. The

% derivative is computed as a 2nd order finite difference (see GRADIENT).
%

% The execution time depends on the sizes of C. It is fastest for powers

% of two over each dimension.

%

% Examples:

%

% % Plots the box-count of a vector containing randomly-distributed

% % 0 and 1. This set is not fractal: one has N = R”-2 at large R,

% % and N = cste at small R.

%  c¢=(rand(1,2048)<0.2);

%  boxcount(c);

%

% % Plots the box-count and the fractal dimension of a 2D fractal set

% % of size 512”2 (obtained by RANDCANTOR), with fractal dimension
% % DF =2+ log(P) / log(2) = 1.68 (with P=0.8).

% ¢ =randcantor(0.8, 512, 2);

%  boxcount(c);

%  figure, boxcount(c, 'slope');

%

% F. Moisy

% Revision: 2.10, Date: 2008/07/09

% History:

% 2006/11/22: v2.00, joined into a single file boxcountn (n=1,2,3).
% 2008/07/09: v2.10, minor improvements

% control input argument
error(nargchk(1,2,nargin));

% check for true color image (m-by-n-by-3 array)
if ndims(c)==3

if size(c,3)==3 && size(c,1)>=8 && size(c,2)>=8

¢ = sum(c,3);



end
end

warning off
¢ = logical(squeeze(c));
warning on

dim = ndims(c); % dim is 2 for a vector or a matrix, 3 for a cube
if dim>3

error('Maximum dimension is 3.");
end

% transpose the vector to a 1-by-n vector
if length(c)==numel(c)
dim=1;
if size(c,1)~=1
c=c;
end
end

width = max(size(c)); % largest size of the box
p = log(width)/log(2); % nbre of generations

% remap the array if the sizes are not all equal,
% or if they are not power of two
% (this slows down the computation!)
if p~=round(p) || any(size(c)~=width)
p = ceil(p);
width = 2"p;
switch dim
case 1
mz = zeros(1,width);
mz(1:length(c)) = c;
¢ =mz;
case 2
mz = zeros(width, width);
mz(1:size(c,1), 1:size(c,2)) = c;
¢ =mz;
case 3
mz = zeros(width, width, width);
mz(1:size(c,1), 1:size(c,2), 1:size(c,3)) = c;
¢ =mz;
end
end

n=zeros(1,p+1); % pre-allocate the number of box of size r
switch dim
case 1 Yommmmmmmmm e 1D boxcount --------------------- %

n(p+1) = sum(c);
for g=(p-1):-1:0

siz = 2"\(p-g);

siz2 = round(siz/2);

for i=1:siz:(width-siz+1)

o(i) = ( (i) || c(i+siz2));

end

n(g+1) = sum(c(1:siz:(width-siz+1)));
end

case 2 Yommmmmmmmm e 2D boxcount ---------=-=======--- %



n(p+1) = sum(c(2));
for g=(p-1):-1:0
siz = 2"(p-g);
siz2 = round(siz/2);
for i=1:siz:(width-siz+1)
for j=1:siz:(width-siz+1)
c(i,j) = (c(iy) || c(itsiz2,j) || c(ij+siz2) || c(it+siz2,j+siz2) );

end
end
n(g+1) = sum(sum(c(1:siz:(width-siz+1),1:siz:(width-siz+1))));
end
case 3 Yommmmmmmmm e 3D boxcount ---------===m-mm-o-- %

n(p+1) = sum(c(2));
for g=(p-1):-1:0
siz = 2"\(p-g);
siz2 = round(siz/2);
for i=1:siz:(width-siz+1),
for j=1:siz:(width-siz+1),
for k=1:siz:(width-siz+1),
c(ij.k)=( c(i,j.k) || c(it+siz2,j,k) || c(i,j+siz2,k) ...
|| c(it+siz2,j+siz2 k) || c(i,j,k+siz2) || c(i+siz2,j,k+siz2) ...
|| c(ijtsiz2,k+siz2) || c(i+siz2,j+siz2,k+siz2));
end
end
end
n(g+1) = sum(sum(sum(c(1:siz:(width-siz+1),1:siz:(width-siz+1),1 :siz:(width-siz+1)))));
end

end
n=n(end:-1:1);
r=2.(0:p); % box size (1, 2, 4, 8...)

if any(strncmpi(varargin,'slope',1))
s=-gradient(log(n))./gradient(log(r));
semilogx(r, s, 's-');
ylim([0 dim]);
xlabel('r, box size'); ylabel(-d Inn / d In r, local dimension');
title([num2str(dim) 'D box-count']);

elseif nargout==0 || any(strncmpi(varargin,'plot',1))
loglog(r,n,'s-");
xlabel('r, box size'); ylabel('n(r), number of boxes');
title([num2str(dim) 'D box-count']);

end

if nargout==0
clearrn

end



Appendix B

SCIENCE, ART, & CHAOS

BY DR. GOTTFRIED JOSEF MAYER-KRESS, Ph.D.

raditional tools, such as math-
ematical equations and for-

mulas, are no longer sufficient in
describing the science of complex and
chaotic systems. Graphical and even
multi-media tools have become increas-
ingly important. In the early 1980s [
used comparatively primitive tools
(three-pen plotters) to create graphic
representations of nonlinear, chaotic
structures. Long before publication of
The Beauty of Fractals I saw the potential
in this material for artists. But I also
knew that | —a scientist without artistic
talent or training — was not the person
who would uncover these other, non-
scientific layers of chaotic structures.

I bad a friend at that time who was an
art student. One day I invited her over
to the computer lab and showed her the
fractal images. However, she was not
especially impressed, though she did sit
down at the computer and experiment
with mixing colors.

Not long afterwards, 1 gave a talk in
New Mexico at the Santa Fe Center for
Contemporary Art where | showed
slides of fractal images. I had a similar
response: Decorative but definitely not
art. What surprised me was that the
artists got excited over old view-graphs
| had with me of mechanical chaos
experiments and chaotic brain wave
data. | realized that to create something
other than visual fast food requires an
artistic eye.

In creating the image of the Chirikov
standard map (figure 1) my intention
was to demonstrate two different prop-
erties of chaotic systems. Starting with a

Calligraphy by Inja Ink
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figure 1

few hundred horizontal lines of identi-
cal color we observe how these lines are
deformed and finally completely mixed
up, but only in certain “chaotic” bands
(in Jenifer Bacon's landscapes, such as
“Canyons and Mesas,” figure 2, this cor-
responds to very rugged areas), where-
as there are always regions for which
stable order persists and forms islands
or chains of islands. This is a typical
metaphor for chaotic systems. [t also has
some real applications — and was origi-
nally conceived in the context of the
“beam-beam interactions” of interact-
ing storage rings in particle physics.
There the particles move approximately
at the speed of light and therefore “feel”
each other’s presence only through an
instantanecus kick, which then can be
described by a discrete map such as the
“standard map” described above. The
standard map has also been used to
describe phenomena of multi-photon
absorption and quantum chaos, a very
recent and exciting field of active
research in which the photo-electric
effect, for which Einstein received the
Nobel prize, appears in a completely
new light.

An interesting recent development
in the visualization of complex pro-
cesses is represented by the recurrence
plots of figure 3. Here an observed pro-
cess (in this case a measured heart rate,
evolving in time — no, the heart is not a
regular clock, it develops complex, cha-
otic patterns, at least as long as it's
healthy) is represented by its recurrence
patterns. A pattern is defined by a vec-
tor consisting of a set of points in the

(continued on page 46)
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In a fastinating convergence of art and science, on artist using an IRIS workstation

has created landscape “paintings” based on visualizations developed by a scientist studying chaos theory

ART, SCIENCE, & CHAOS

BY JENIFER BACON

ast year while at Princeton
University T began a collab-
oration with Gottfried Josef
Mayer-Kress working with computer
images that he had generated for scien-
tific research in chaos. It was an oppor-
tunity for me as a graphic artist to not
only work directly with a scientist, but
also to learn to use the IRIS workstation
and Princeton Visualization Tools.
When 1 began the project my sole pur-
pose was to work with the images in
order to clarify them for scientific visu-
alization. The images would still be
computer models of chaotic systems to
be used forscience. I had seen chaos and
fractal images in the past. I regarded
them as intriguing scientific images but
not art.

In one afternoon I learned to use the
Princeton Visualization Tools, the IRIS
workstation, and began work. The stan-
dard “makemap” color map was used
for the initial images I received from
Mayer-Kress (figure 1). At first I felt
there were too many colors all mixed
together, which was distracting. How-
ever, there was something intriguing
about the structure of the images. They
seemed to flow and move like liquid or
vapor and I began to see them as raw
material. It was as if | were a painter and
had gone outdoors with canvas and oil
colors to paint a landscape. The chaos
images on the computer put me in mind
of the land and sky — 1 could paint and
interpret them as I wished. The flexibil-
ity and power of the IRIS workstation en-
hanced the work, allowing the process to
become spontaneous and playful.

IRIS Universe/NUMBER SIXTEEN

figure 3

figure 4

My first stép was to search the image
and determine if there were any inher-
ent patterns. In the interest of simplifica-
tion I eliminated the mix and jumble of
colors. I wasn't interested in merely cre-
ating pretty pictures; I was looking for a
movement or a visual tension in the
image that sparked my personal vision.
Still, I questioned the value of searching
for personal visions in images that are
essentially models of particle accelera-
tors, chemical reactions, and heart rates.
Painting was far more immediate and
allowed absolute freedom along with
the challenge of blank canvas. Was there
then any value to using these images of
chaos to create a personal vision?

The image titled Canyons and Mesas
(figure 2), originated from the nonlinear
mathematical “standard map” of a
torus, was transformed into a brilliant
landscape full of waves, motion and
color. This torus slice, which had form-
ed a strange attractor in the science
model, had become a strange surreal
landscape in its art version.

In the image Blue Canyons (figure 3)
the color map is a recurrance plot of the
heart rate of a pig, but the image was
manipulated to create a rugged red
landscape creased with deep, myste-
rious canyons.

Islands (figure 4) began as amodel of a
chemical reaction and was transformed
info ethereal islands floating down a lig-
uid pathway of pink and blue.

In the creating of these abstract land-
scapes | had discovered new visual tools
which made it possible for me to create
unique images that could not have been

(continued on page 46)
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SCIENCE (continued from page 44)

time series separated by a fixed time
interval. The time of the process evolves
along the horizontal axis, on the vertical
axis we represent the time interval be-
tween the pattern at a certain time given
by the x-coordinate and a new pattern
occurring later. Thus both axes repre-
sent times at which patterns are ob-
served. The color indicates how similar
these patterns are. If there is some deter-
ministic structure in the evolution of the
patterns this then becomes immediately
visible in the recurrence plot.

For example, according to a hypoth-
esis expressed by A. Goldberger of the
Harvard Medical School, as a heart
comes close to a pathological state —
such as a heart attack — the complexity,
or “chaos,” of the heart rhythms should
decrease which may then be observed
in the more regular structure of the
recurrence plot. (For an article on this
topic see Discover magazine, May 1990.)

In the third example (figure 4) com-
puter graphics were used to describe
the stability of a model of an oscillating
chemical reaction measured against
external, randomly variable agitations.
Especially in large chemical reactors itis
extremely important to understand
how sensitive the system is to small
irregularities in the control parameters
in order to prevent dangerous run-away
reactions or explosions.

Starting from a stable condition for
the reaction, we can apply a Chapman-
Kolmogorov method to compute the
probabilities for the behavior of the sys-
tem at a given time, averaged over the
ensemble of external agitations. The
peaks in the figure correspond to states
of the chemical system for which there
exist constant reaction rates. Adding
small external agitations leads to the
formation of the “atoll,” a situation in
which the reaction rate changes in an

oscillatory pattern, still with a high
probability (z-coordinate) to be found
near the original steady fixed points.

Thus we visually observe the evolu-
tion of landscapes which describe the
statistical properties of the reactions
and the conditions under which insta-
bilities might occur. This class of non-
linear equations is very general. Such
equations can also model the stability of
ecologies and also have been used to
describe crisis in the strategic arms race.

ART (continued from page 45)

achieved in any other way.

The results of this art/science collab-
oration were entirely unexpected and
went far beyond what Dr. Mayer-Kress
and | had anticipated. My intent was to
use Mayer-Kress's images as a point of
departure, a basis on which to create
something more than brightly colored
computer graphics — as a vehicle for
self expression.

While computer visualization tech-
nology is encouraging the convergence
of science and art, we are also reminded
that age old, fundamental differences
exist between the two disciplines. Visu-
alization in the sciences is typically used
as a means of representing data so that it
may be better understood or communi-
cated to others. Visualization as applied
in the arts is not so much a representa-
tion of data as it is a representation of
the artist’s imagination and feelings.
Gottfried Josef Mayer-Kress holds a Ph.D.
in Theoretical Physics from the University
of Stuttgart, West Germany. He is a visiting
Assistant Professor in the Department of
Mathematics at the University of Califor-
nia, Santa Cruz.

Jenifer Bacon is Art Director at Tygenhof
& Partners, a Southern California aduvertis-
ing agency. Lid
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Appendix C
Fern.m

%Code credit to
Y%http://www.mathworks.com/matlabcentral/fileexchange/16618-barnsleys-fern
Y%parameters from Fractals Everywhere by Michael Barnsley
%comments by Ali Lavine

%Notation for IFS of affine map:

% wj(x) = wjlx;y] = [aj bj; ¢j djI*[x;y] + [e]; fj] = Aj*x +
% where each j is a subscript, j = 1,2,3,4, and the total probability of
% the wj's equals 1.

n=70000; % number of iterations

%IFS code for a Fern

%a =[al a2 a3 a4]

a=[00.850.2 -0.15];

b=[0 0.04 -0.26 0.28];

c=[0-0.04 0.23 0.26];

d=[0.16 0.85 0.22 0.24];

e=[000 0];

f=[01.6 1.6 0.44];

%initialize variables

x(1)=0;

y(1)=0;

J=0;

%loop for each iteration

for i=1:n

prob=rand;

%prob <pl

if prob<0.01

=L

% pl <prob <pl +p2

elseif prob>0.01 && prob<0.86

=2

% pl +p2 <prob <pl +p2+p3

elseif prob>0.86 && prob<0.93

=3

else

=4

end

x(i+1)=a(j)*x(D)+b(j)*y () +e(j);
y(i+1)=e()*x()+G) Y (1+HG);

end

plot(x,y,'g.",'MarkerSize',1)
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