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Abstract

The peroxidase-oxidase (PO) reaction is an important example of how oscillating reactions arise in living
organisms. The reaction is important mathematically because exhibits many characteristics of chaos. Of these
characteristics, sensitive dependence on initial conditions illustrates how predicting the future state of the PO
reaction is next to impossible. For this reason, chaotic behavior in living organisms presents many obstacles to
chemists and biologists trying to predict how systems will react to perturbations. This paper explores the chaotic
behaviors of the PO reaction, using a system of four differential equations as a model. The topics analyzed are
timeseries data, chaotic attractors, bifurcations, tests for sensitive dependence, Lyapunov exponents, and one-
dimensional time delay embedding.

Oscillating Reactions

Less than a century ago, oscillating chemical re-
actions were thought to be nothing more than
erroneous results caused by chemical impuri-
ties. Few believed that a reaction, in proceeding
to equilibrium, could keep oscillating back and
forth between two or more colors. The Lotka-
Volterra Oscillator and the Belousov-Zhabotinsky
reactions were two of the first oscillating reac-
tions to be studied extensively and universally
accepted to have oscillating concentrations of re-
actants [1]. Finding chaos in oscillating reactions
is a much more recent undertaking, gaining pop-
ularity with the rise of computers. In fact there is
still debate as to whether oscillating chemical re-
actions truly exhibit chaos, or if they are merely
oscillatory with very large period [2]. However
since the discovery and eventual acceptance of
oscillatory reactions, many more such reactions
have been designed and discovered.

One of the main areas of discovery of oscillat-
ing reactions is in living systems. The peroxidase-
oxidase (PO) reaction is a prime example of such
a reaction. It was one of the first reactions out-
side of the BZ reactions to be classified as oscil-
lating and chaotic, and is an extensively studied
example of an in vivo oscillating reaction (the re-
action can be carried out both in vivo and in vitro).
Molecular oscillating reactions are an important

area of study, as they are essential to understand-
ing the more complex oscillating systems of or-
ganism (eg. a heartbeat)[1].

The Peroxidase-Oxidase Reaction

The peroxidase-oxidase reaction is an enzyme
catalyzed redox reaction. Nicotinamide adenine
dinucleotide (NADH) is oxidized and molecular
oxygen acts as an electron receiver. The net reac-
tion is

2NADH + O2 + 2H+ → 2NAD+ + 2H2O

O2 and NADH are continuously added to and
products are continuously removed from the ex-
perimental system via the use of a continuous-
flow, stirred tank reactor (CSTR). Experimenta-
tion has shown that the PO reaction exhibits os-
cillatory behavior and a period-doubling1 route
to chaos [3]. These characteristics have been ef-
fectively modeled using a simplified eight-step

1Here I have adopted the terminology of [3]. This does not
mean period-doubling in the traditional sense. From here on
out, period-doubling refers to the maxima in the timeseries
data. When the number of maxima in a period in the time-
series data doubles, we call it period-doubling.
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Figure 1: Timeseries plot of [O2] and [NADH] to illustrate
the correlation of the concentrations between the two species.
Here mechanism I and mechanism II are constantly battling to
be the dominant reaction mechanism, resulting in oscillating
concentrations of [O2] and [NADH].

mechanism. The Olsen model [4] is

B + X k1−→ 2X 2X k2−→ 2Y A + B + Y k3−→ 3X

X k4−→ P Y k5−→ Q X0
k6−→ X

A0
k7−→ A B0

k8−→ B

where A and B are reactants (O2 and NADH re-
spectively), P and Q are the products, and X and
Y are reaction intermediates. Experimentally, [X]
corresponds with [NAD.] and [Y] corresponds
with the concentration of oxyferrous peroxidase
(compound III), however it is still unknown how
good the correlation is between these intermedi-
ate variables and the true intermediates. It is also
important to note that k1 = [enzyme], the concen-
tration of peroxidase enzyme, and there is also a
strong correlation between k3 and the concentra-
tion of 2,4-dichlorophenol, [DCP] [3]. Thus k1 and
k3 are variable parameters. Oscillatory behavior
arises because of competing mechanisms in the
PO reaction, appearing in the Olsen model as fol-
lows: We will call mechanism I the net reaction of
the autocatalytic production of X from B and X,
and the production of 2Y from 2X.

Mechanism I:Mechanism I:Mechanism I:
B + X → 2X

2X → 2Y
B + X → 2Y

Mechanism I dominates the PO reaction when
the concentration of X is high, but uses up X to
create Y. The rate of mechanism I can be varied

by changing the concentration of peroxidase en-
zyme, k1. Once the concentration of X falls below
some critical value, [X]crit, another mechanism,
referred to from here on as mechanism II, takes
over. Mechanism II is the termolecular reaction
of A, B, and Y to form X.

Mechanism II:Mechanism II:Mechanism II:
A + B + Y → 3X

Mechanism II dominates when the concentration
of Y is high, using up Y and turning it to X. Once
the concentration of Y falls below some [X]crit,
mechanism I takes over once again. Thus the
concentrations of the intermediates X and Y oscil-
late. Since the rate at which the reactants are con-
verted into intermediates depends on the concen-
tration of the intermediates, the concentrations of
the reactants also oscillate and are strongly cor-
related. See figure 1 for an example of the cor-
relation of [O2] and [NADH]. Also note that in
mechanism II, the reaction rate is governed by k3,
the concentration of DCP. Since k1 and k3 are sim-
ple to control experimentally, there is an easy way
to change the rate constants that govern mech-
anisms I and II. In fact k1 and k3 determine the
characteristics of how the concentrations of A, B,
X, and Y vary with time, and if chaos arises. In
fact, either decreasing k1 or increasing k3 results
in a period doubling route to chaos [3].

Figure 2: Projections of the four dimensional phase space
([O2], [NADH], [NAD.], [Co III]) of a chaotic attractor for the
PO reaction with k1 = 0.35, and k3 = 0.035.
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Figure 3: Bifurcation diagram of [O2]max on k1 (here k3 =
0.035). Decreasing k1 leads to period-doubling and chaos.
Decreasing k1 past the chaotic range once again yields peri-
odic oscillations in [O]2]. Bifurcations on k1 all have a similar
structure no matter what value of k3 is used. However, the
values of k1 that show chaotic behavior change depending on
k3.

Mathematically Approximating the
Olsen Model

Methods All numerical analysis was carried out
using Matlab. Systems of differential equations
where solved using ode45 (Runge-Kutta numeri-
cal approximation method). Timeseries data was
numerically compared by fitting a cubic spline
(using the Matlab ’fit’ toolbox) to the data from
ode45 and then interpolating values from this fit.
Linear regressions were also carried out using
the ’fit’ toolbox.

The Olsen model can be approximated by the
following system of four first-order differential
equations:

Ȧ = k7(A0 −A)− k3ABY

Ḃ = k8 − k1BX − k3ABY

Ẋ = k1BX − 2k2X
2 + 3k3ABY − k4X + k6

Ẏ = 2k2X
2 − k5Y − k3ABY

The following parameters were used in all of the
calculations in this paper: k2 = 250, k4 = 20,
k5 = 5.35, k6 = 10−5, k7 = 0.1, k8 = 0.825, and
A0 = 8. Values of k1 and k3 are indicated in the
diagrams. Initial conditions, except where indi-
cated, are [O2] = A = 6, [NADH] = B = 58,
[NAD.] = X = 0, and [Co III] = Y = 0.

Phase space diagrams were computed to com-
pare [O2], [NADH], [NAD.], and [Co III]. No mat-
ter what values of k1 and k3 were used to com-

pute the phase space, they all resulted in attrac-
tors. Chaotic attractors (as in figure 2) resulted
from values of k1 and k3 corresponding with val-
ues of k1 and k3 that were found to yield chaos
in figure 6. Similarly, periodic attractors resulted
from values of k1 and k3 that were found to yield
periodicity in figure 6.

Bifurcations of the concentration of reactants
over k1 (see figure 3) or k3 (see figure 4) both il-
lustrate successive doubling in the number of dif-
ferent maxima in the timeseries data, leading to
chaos. This period-doubling route to chaos ap-
pears independently from either decreasing k1 or
increasing k3. The behavior of the bifurcation dia-
gram on k1 is similar for any choice of k3, as is the
behavior of the bifurcation on k3 for any choice
of k1. Furthermore, experimentation has verified
the predicted behavior of the bifurcations [3],[4].

Although the bifurcation diagrams display ar-
eas indicative of chaos, further testing is required
to determine whether the disordered regions do
indeed give rise to chaos. Among the methods
available to test this is to check for sensitive de-
pendence on initial conditions. This was done
by calculating the timeseries data from the Olsen
model differential equations. Timeseries data
was calculated two times from initial conditions
differing in [NADH] concentration by 1e − 10.
Then the natural log of the magnitude of the dif-
ference of [O2] concentration was calculated, and
a line was fitted to the section with positive over-
all slope if it existed (see figure 5). The slope of
the regression line is therefore the Lyapunov ex-
ponent corresponding to the orbit of the oxygen
concentration in the system.

Tests for sensitive dependence were carried out
by monitoring [O2], [NADH], [NAD.], and [Co
III], while changing the difference in initial con-
ditions between all four variables. Also, differ-
ent values of k1 and k3 were used. The Lya-
punov exponents resulting from the sensitive de-
pendence tests verify the data in the bifurcation
diagrams: no sensitive dependence (slope ≤ 0)
was found where the bifurcation diagram shows
periodic behavior of [O2], while sensitive depen-
dence was found (slope > 0) where the bifurca-
tion diagrams predict chaos. As a tolerance for
these tests, 0 was approximated to be anything
less than 1e− 4.

Testing for sensitive dependence in the above
manner proved to be very tedious, and is im-
practical for understanding how k1 and k3 in-
teract to either give rise to a steady state, peri-
odic oscillations, or chaos. In order to character-

3



Figure 4: Bifurcation diagram of [O2]max on k3 (here k1 =
0.35). The points on the bifurcation diagram correspond to the
local maxima of the timeseries data. In (A), where k3 = 0.3,
there are two alternating peaks, corresponding to the two
points above k3 = 0.3 on the bifurcation diagram. In (B),
there is no easily discernable pattern to the peaks in the time-
series data, corresponding to the chaotic region in the bifurca-
tion diagram at k3 = 0.035. In (C) there are three alternating
peaks. Note the doubling route to chaos as k3 increases.

ize these interactions, a plot over k1 and k3 was
constructed, displaying Lyapunov exponents for
the different k values (figure 6). The black area
in figure 6 represents values of k1 and k3 for
which the concentration of oxygen is in a steady

Figure 5: A plot of time versus the natural log of the abso-
lute value of the difference in [O2] concentration when initial
conditions differ by 1e − 10 in [NADH]. The slope of regres-
sion line (in red), the Lyapunov exponent, is 0.022, indicating
chaotic behavior of [O2]. k1 = 0.35 and k3 = 0.035

state. Note that when k3 is increased just past the
steady state area, the behavior of oxygen concen-
tration becomes chaotic (light grey/white). Then
as k1 decreases and k3 increases, there is a large
area of periodic behavior (grey), eventually get-
ting to a region of chaos denoted by white and
light shades of grey in the figure. As k1 continues
to decrease and k3 continues to increase, there is
once again a large area of well behaved, periodic
oscillations in [O2]. Figure 6 supports the gen-
eral trend seen in the bifurcation diagrams (fig-
ures 3 and 4): decreasing k1 leads from periodic
to chaotic to periodic behavior, as does increasing
k3. Furthermore figure 6 illustrates that this trend
is relatively universal across values of k1 and k3.
Lyapunov exponents were calculated as the slope
of a linear regression of the natural log of the dif-
ference in [O2] (as described above for sensitive
dependence test). The Lyapunov exponents are
a conservative approximation: the linear regres-
sion was taken from time 50 to time 250 in all
cases, so in a case of extreme sensitivity to initial
conditions, the Lyapunov exponent in figure 6 is
too small (but still larger than 0.005 and therefore
indicative of chaos).

Finally, in an attempt to verify the chaotic na-
ture of the timeseries data, a one-dimensional
map was constructed (figure 7). The map is con-
structed by plotting the preceding amplitude of
the [O2] timeseries data against the following am-
plitude. The map appears to be a fractal since
zooming in on an area of the map yields an or-
dered structure. Furthermore, in preliminary cal-
culations (due to time constraints) with mediocre
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Figure 6: k1 and k3 phase plane illustrating combinations
of k1 and k3 that exhibit chaotic behavior. The color bar in-
dicates colors corresponding to the Lyapunov exponent. Ar-
eas where the Lyapunov exponent is greater than 0.005 are
thought to be chaotic. Note that the Lyapunov exponents
in this plot are conservative estimates due to the sampling
method, ie for an exponent greater than 0.005, true value of
the Lyapunov exponent may be larger than stated. The area
in black represents where the concentration of oxygen is in a
steady state.

resolution, the box counting dimension of the
fractal appeared to be around 1.1 or 1.2. This in-
dicates that indeed the map is a fractal.

The fact that the time-delay embedding of the
successive peaks in the [O2] time series is a frac-
tal supports the claim that the PO reaction indeed
exhibits true chaos. If the orbit of [O2] was merely
periodic with a very long time scale, the fractal
dimension of figure 7 would be zero (just a finite
collection of points). Showing that the fractal di-
mension of the map is greater than zero would
provide strong evidence for [O2] exhibiting chaos.

Conclusions

There is significant and conclusive evidence that
the PO reaction displays true chaotic behavior.
Obviously this statement holds true only for cer-
tain choices of k1 and k3, however that there can
be chaos in molecular reactions taking place in-
side an organism is important.

We have shown that the attractors are bounded
for the Olsen model. Furthermore, for a given
chaotic orbit we have seen that there exists a cor-
responding positive Lyapunov exponent. These
two facts by themselves justify calling the orbit
chaotic (this is the definition of chaos). Addi-
tionally we have shown that there indeed exists
sensitive dependence on initial conditions, and

Figure 7: One-dimensional time delay embedding for [O2].
This figure graphs the maxima versus the successive maxima
in the [O2] timeseries data. Zooming in on the figure reveals
a fractal structure. The structure supports the claim that [O2]
exhibits chaotic behavior. k1 = 0.35 and k3 = 0.035.

that a one-dimensional map illustrating the suc-
cessive change in maxima of the timeseries data
for a reactant is a fractal. Finally, there is a period-
doubling route to chaos. Thus it is clear that the
PO reaction can exhibit chaos.

One issue that needs to be discussed is exactly
how good of a model the Olsen model is. Exper-
imentation has proven that the model describes
periodic oscillations correctly: the number of
different peaks in the experimental timeseries
data corresponds with the predictions from the
bifurcation diagrams. Similarly, experimental re-
sults mimic the chaotic behavior where predicted
on the bifurcation diagrams. However since the
Olsen model displays sensitive dependence for
certain choices of k1 and k3 (presumably the PO
reaction does also), it is impractical to expect the
model to properly predict the chaotic timeseries
data for an experimental procedure. Indeed that
is the nature of chaos: it is extremely difficult to
predict. The most important tests of how good
the Olsen model is are those that test how well
the model predicts periodic behavior, and how
well the model predicts when chaos will arise.

Demonstration: The BZ reaction The demon-
stration shown was the Belousov-Zhabotinsky
reaction. It is given by

BrO−3 + 5Br− + 6H+ → 3Br2 + 3H2O.

To reproduce the demonstration, contact Charles
(Charlie) Ciambra in the chemistry department.
He was extremely helpful in preparing the neces-
sary chemicals and setting up the reaction. The
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procedure for the demonstration is found in [5].
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