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Chaos in Chua’s Circuit

Mike Audet

December 6, 2007

Math 53: Chaos!

Introduction and Brief History

This project analyzes Chua’s circuit, a simple electronic circuit that demonstrates chaotic behavior.  The study consists of two main components:  numerically exploring (in Matlab) the equations derived from the circuit, and constructing the actual circuit to replicate numerical results with experimental data.  The physical circuit demonstrates that one can create chaotic behavior in a relatively simple system.

Leon Chua invented the circuit in 1983 to demonstrate chaos in an actual physical model and to prove that the Lorenz double-scroll attractor is chaotic.
  The electronic circuit suits the study of chaos well because one can precisely control its parameters and can readily observe the results on an oscilloscope.  The circuit became popular to study because it is easy to construct, and many people have built the circuit using ordinary electronic components.  In fact, one can model the circuit using only resistors, capacitors, inductors, op-amps, and diodes.  In 1986, Chua, Komuro, and Matsumoto proved rigorously that the Chua attractor is indeed chaotic.

Cross’s Version of the Circuit and its Equations

As mentioned above, people have created versions of the circuit that do not rely on any specially produced parts (the original included a laboratory-made “Chua diode”); rather, one can build versions of the circuit using off-the-shelf components.  Michael Cross proposed the version of the Chua circuit used in this project and shown in Figure 1.
  The right-hand side of this circuit (all the components to the right of C1 in the diagram) simulates the Chua diode, providing nonlinear negative resistance.  The operational amplifier and its resistors have a negative resistance of size –R1, and the diodes provide nonlinearity.
  The left side of the circuit acts as an RLC circuit, which would simply produce damped oscillations without the right-hand side.
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Figure 1:  Cross’s Version of Chua’s Circuit


To derive the three differential equations for the system, we choose three variables that change over time:  V1, the voltage across capacitor C1; V2, the voltage across capacitor C2; and I, the current through the inductor.  We apply Kirchhoff’s first law—which states that the current entering a node equals the current leaving a node—to the nodes above C1 and C2 in the diagram.  Next we apply Kirchhoff’s second law—which states that the sum of the voltage around a loop equals zero—to the loop containing the inductor and C2.  Thus, Kirchhoff’s laws give the following equations for the circuit:




C1(dV1/dt) = (V2-V1)/R – g(V1)



C2(dV2/dt) = -(V2-V1)/R + I




L(dI/dt) =  -rI – V2
Note that g(V1) is the current through the nonlinear part of the circuit.  Michael Cross transforms the above equations into the following nondimensional system of equations:




dX/dt = a(Y-X) – G(X)




dY/dt = s[-a(Y-X) + Z]




dZ/dt = -c(Y + pZ)

where


a = R1/R
b = 1-R1/R2
c = (C1*R1^2)/L
s = C1/C2
p = r/R1

and G(X) is the normalized current-voltage characteristic for the right part of the circuit:




G(X) =
-X, |X|≤1





-[1+b(|X|-1)]*sign(X), 1<|X|≤10





[10(|X|-10)-(9b+1)]*sign(X), |X|>10

The current-voltage characteristic for the negative nonlinear resistance in normalized terms is:
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To find the equilibrium points, we set the three differential equations equal to zero and let G(X)=+(1-b)-bX to derive (0,0,0) and:


X = + (1-b)/[a/(1+pa) – b]
Y = [ap/(1+ap)]*X
Z = -Y/p
These fixed points will be used to plot the bifurcation diagram and a 2D attractor.

Numerical Analyses in Matlab

Matlab’s ode45 can numerically model the three normalized differential equations to produce attractors for the circuit.  For the numerical analyses, we will use the values for R, R1, R2, C2, L, and r that are listed in Figure 1.  We will vary C1 to change the behavior of the system.  The default initial condition will be (0.1, 0.15, 0.05).  Figure 2 shows a periodic orbit at C1=4.28e-9 and a chaotic orbit at C1=4.32e-9.
  In order to accurately model the attractors, I had to adjust the ode45 settings of relative and absolute tolerance to 1e-6 and 1e-9, respectively.
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Figure 2:  Orbits when C1=4.28e-9 and C1=4.32e-9


To better understand the behavior of the circuit as C1 varies, we can examine a bifurcation diagram.  To create the bifurcation diagram, I considered a projection of the orbit onto the X-Y plane (which corresponds to the normalized V1-V2 plane) and where the orbits intersect the projection onto the X-Y plane of the line which passes through the equilibrium points.
  Figure 3 shows a visualization of these intersection points.  To find the points in Matlab, I used a flag variable that triggered if a given Y-value of the orbit was below the line between equilibrium points and the next Y-value was above it, or vice versa.  The program then calculated the intersection of two lines projected onto the X-Y plane:  the line between the equilibrium points and the line between the two consecutive points in the orbit that crossed the equilibrium-point line. 
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Figure 3:  Procedure to Create Bifurcation Diagram


The bifurcation diagram used the X (normalized V1) values of the intersections and plotted them along the vertical axis.  The varying values of C1 were plotted along the horizontal axis.  To examine a wide range of behavior—including a period doubling route to chaos—I let C1 vary between 4.2e-9 and 4.5e-9.  In order to balance resolution with computing time, I used 1000 intervals.  Figure 4 represents the end-result of an overnight computation:  a clear bifurcation diagram for the values of C1.  The diagram illustrates the periodic orbit at C1=4.28e-9 and the chaotic orbit at C1=4.32e-9.  Also, as C1 decreases from 4.5 to 4.4 nano-farads, we witness the period-doubling route to chaos.
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Figure 4:  Bifurcation Diagram for C1=4.2 to C1=4.5


We can also analyze a 2-dimensional surface of section for a chaotic orbit.  For the SOS plane, I chose to extend the equilibrium line (used in creating the bifurcation diagram) in the Z dimension.  This defines a plane whose normal is the cross product of (x1, y1, 0) and (0, 0, 1), where (x1, y1, z1) is a nontrivial equilibrium.  Because the Z value should not affect the intersections, my code detects when the orbit crosses the plane in the same manner it calculated when the orbit crossed the equilibrium line in the X-Y plane.  The code then calculates the intersection of the plane with the line between the two orbit points (on either side of the plane).
  To plot a graph of the intersection points on the surface-of-section plane, I used the Z values of the points as the horizontal axis.  The vertical axis represents the distance of the intersection points from the origin in the X-Y plane, which is defined to be positive when X≥0 and negative when X<0.  This works because the points, when projected onto the X-Y plane, lie on a straight line that passes through the origin.  I analyzed the two-dimension attractor formed by the intersection of this surface-of-section with the chaotic orbit produced when C1=4.32e-9.  For t=[0..1 million], the code found around 43 thousand points of intersection.  Figure 5 shows the intersection points plotted on the surface of section plane.  The Boxcount program calculated the boxcounting dimension of the 2D attractor to be about 0.9.
  The code also calculated the correlation dimension to be around 0.84.
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Figure 5:  2D Surface of Section for C1=4.32e-9

A hallmark of chaos is sensitive dependence on initial conditions.  In order to test this, I launched two trajectories with ICs very close together and plotted the distance between the points over time.  Since ode45 does not allow the user to specify a time interval, I coded a loop that solved each initial condition problem for t=[0..1] then recorded the points at t=1 and used them as new initial conditions.  My code then outputs a graph of the natural log of the Euclidean distance between the orbits versus time.  Figure 6 shows the graphs for C1=4.28e-9, which is a periodic orbit, and for C1=4.32e-9, which is a chaotic orbit.  The initial conditions for the orbits were (0.1, 0.15, 0.05) and (0.1, 0.15, .05+1e-10), and the code ran 3000 iterations of the ode45 loops to show the distance between the orbits from t=0 to t=3000.  For the periodic attractor, the two orbits remain close together; for the chaotic attractor, the two orbits grow exponentially far apart.  To estimate a Lyapunov exponent, I exported the data for the chaotic attractor into Excel and found the slope of the line to be 0.011.  The Chaos textbook reports the largest exponent of a chaotic Chua orbit to be 0.48.
  However, the book uses different equations to model the circuit, and we must keep in mind that we have normalized the time variable.  In any case, we can clearly see that when the attractor is chaotic, the solutions are extremely sensitive to initial conditions.
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Figure 6:  Distance Between Orbits with Close ICs for C1=4.28e-9 (blue) and C1=4.32e-9

Experimental Model of the Circuit
In order to collect experimental data on the Chua attractor, I built a working model of the circuit according to the Cross diagram in Figure 1.  Due to the availability of parts, I had to change a few parameters:  L=10mH, r=0.110K, and C2=68nF.  For R, I used three potentiometers in series, whose maximum values were 1000, 500, and 25 ohms.  For C1, I used a capacitance decade box (which had 0.1nF steps) in parallel with a 100pF tuning capacitor.  To compensate for imperfect voltage sources, a small capacitor was placed across the V- and V+ pins of the op-amp.
  Since the circuit operates at audible frequencies, it can output to a computer’s line-in jack.  In order to do this, I used resistors to step down the voltage to an acceptable level for the input.  The two outputs and the ground were connected to a 1/8” male stereo connector.  To prevent the output from altering the dynamics of the circuit, I used a pair of op-amps to create a buffer for each line out.
  Figure 7 shows the circuit diagram for each output line, and Appendix A contains digital pictures of my circuit.
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Figure 7:  Output Buffer and Voltage Step-Down

The circuit was very sensitive to changes in R and C1, whose values I measured using a multimeter and an RCL-meter.  Through trial and error, I found interesting behavior by setting the capacitance decade box to 3nF, setting the three potentiometers to total 1.55Kohms, and varying the 100pF tuning capacitor to alter the behavior.   When I varied the tuning capacitor only slightly, the circuit changed from demonstrating a periodic attractor to demonstrating a chaotic attractor, as Figure 8 reveals.
  Although the values are completely different for my circuit versus the numeric model, the behavior seems to mimic that seen around C1=4.28nF and C1=4.32nF in the numeric model (or a similar area on the bifurcation diagram).  As I increased the capacitance of C1 in my experimental circuit, the attractor quickly changed from periodic to chaotic.  If we were to draw a line through the equilibrium points, we would see that the experimental periodic orbit intersects the line in a similar fashion to the value of C1=4.28nF in the numeric bifurcation diagram.
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Figure 8:  Experimental Data for Periodic and Chaotic Attractors


Since the circuit outputs to audible frequencies, I also recorded the computer input as an audio file.  For a periodic orbit, the circuit produced a clear tone; for a chaotic orbit, the circuit produced a noisy sound.  I used the audio data for the V1 output to create a 3-dimensional attractor in Matlab using time-delay embedding.  I imported a five second clip sampled at 44.1 kHz into Matlab for this analysis.  The second variable offsets the list of points by one row, and the third variable offsets the list by two rows.  Since the sound was sampled at 44,100 Hz, the time delay for a one-row shift is 1/44100 = 2.27e-5 seconds.  Figure 9 shows the three-dimensional attractors that this time-delay embedding technique produced when they are projected onto one of the coordinate planes.  The circuit parameters are the same as in Figure 8.  If we compare the 2D projections of the attractors to representations of the attractors from the computer oscilloscope, we can conclude that the time-delay embedding accurately models the data.  In this manner, Matlab can produce a 3-dimensional attractor from the experimental data. 
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Figure 9:  Attractors Produced by Time-Delaying Embedding (Projected onto 2D Plane)

The experimental model of the circuit produced data consistent with the numerical analysis of the differential equations.  Thus, we have seen how a simple electronic circuit can generate complex chaotic behavior.  Chua’s circuit allows us to model and analyze chaotic behavior that arises from a real physical system.  This project has derived equations for the system using Kirchhoff’s laws and analyzed some of the chaotic behavior numerically.  In addition, this project involved the construction of a physical circuit that modeled the numeric results and beautifully illustrated a real-world example of chaos.
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APPENDIX A:  CIRCUIT PHOTOGRAPHS
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View of the entire circuit.  Note the three potentiometers forming R. The parallel capacitance decade box and tuning capacitor in parallel form C1.
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Overhead view of the breadboards.  The blue board is the Chua circuit according to the Cross construction (but R and C1 are wired in, as seen in the first picture).  The white board is the output board, including the op-amp buffers and the voltage step-down resistors.
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Close-up of the 1/8” output jack.

APPENDIX B:  MATLAB CODE

NOTE:  When I ran my Matlab code, I estimated the Y-coordinate of the equilibrium points as Y=a*p*X.  I subsequently modified the code to more accurately produce Y=a*p*X/(1+a*p).  This is only a minor adjustment and should not affect any of the final outputs.  However, small numeric difference may appear if one were to run the code given in this appendix (with the more accurate Y-coordinate value) and compare it to the results in this report.
Code for “gbar” function (referenced by other codes)

function [x] = gbar(y,b)
if abs(y)<=1
    x = -y;
elseif abs(y)<=10
    x = -(1+b*(abs(y)-1))*sign(y);
else
    x = (10*(abs(y)-10)-(9*b+1))*sign(y);
end
end
Code for 3D Plot of Attractor (Change C1 to alter behavior)
R = 1300; 
R1 = 1200;
R2 = 3300;
r = 85;
C1 = 4.28e-9; %chaos at 4.32e-9, periodic at 4.28e-9
C2 = 69e-9;
L = .0085; 
a = R1./R;
b = 1-R1./R2;
c = (C1.*(R1)^2)./L;
s = C1./C2;
p = r./R1;
F = @(t,y) [ a*(y(2,:)-y(1,:))-gbar(y(1,:),b); s*(-a*(y(2,:)-y(1,:))+y(3,:)); -c*(y(2,:)+p*y(3,:)) ];
yo = [.1;.15;.05];                              % IC
[ts, ys]  = ode45(F, [0 10000], yo, odeset('reltol', 1e-6, 'abstol', 1e-9));    % numerically solve
figure;plot3(ys(end-5000:end,1), ys(end-5000:end,2), ys(end-5000:end,3), '-'); axis vis3d; 
xlabel('V1'); ylabel('V2');zlabel('I');
Code for Bifurcation Diagram (Note:  Time Intensive!)
%circuit parameters not relying on C1
R = 1300; 
R1 = 1200;
R2 = 3300;
r = 85;
C2 = 69e-9;
L = .0085; 
a = R1./R;
b = 1-R1./R2;
p = r./R1;
%equilibrium points
x1 = (1-b)/((a/(1+a*p))-b);
y1 = a*p*x1/(1+a*p);
%start plot
figure;
xlabel('C1');ylabel('V1');title('Bifurcation when V1 passes through eq. line in V1-V2 plane');
%set max points for each "slice"
N = 25000; 
%run C1 loop
for C1=4.2e-9:.0003e-9:4.5e-9
    C1
    c = (C1.*(R1)^2)./L;
    s = C1./C2;
    F = @(t,y) [ a*(y(2,:)-y(1,:))-gbar(y(1,:),b); s*(-a*(y(2,:)-y(1,:))+y(3,:)); -c*(y(2,:)+p*y(3,:)) ];
    yo = [.1;.15;.05];                             
    [ts, ys]  = ode45(F, [0 N], yo, odeset('reltol', 1e-6, 'abstol', 1e-9)); 
    m1 = y1/x1;
    b1 = 0;
    for k=length(ys)-5000:length(ys)-1
      flag = 0;
     if ys(k,2)>(m1*ys(k,1))
         flag = flag+1;
     else
         flag = flag-1;
     end
     if ys(k+1,2)>(m1*ys(k+1,1))
         flag = flag+1;
     else
         flag = flag-1;
     end
     if flag == 0   %this will calculate the intersection and plot the point on the bifurcation
            m2 = (ys(k+1,2)-ys(k,2))/(ys(k+1,1)-ys(k,1));
            b2 = ys(k,2)-m2*ys(k,1);
         if m1-m2 ~= 0
            hold on; plot(C1,(-b1+b2)/(m1-m2), '.k', 'markersize', 3);
         end
     end
    end
end

Code to Visualize Bifurcation and Surface-of-Section Setup

R = 1300; 
R1 = 1200;
R2 = 3300;
r = 85;
C1 = 4.28e-9;
C2 = 69e-9;
L = .0085; 
a = R1./R;
b = 1-R1./R2;
c = (C1.*(R1)^2)./L;
s = C1./C2;
p = r./R1;
F = @(t,y) [ a*(y(2,:)-y(1,:))-gbar(y(1,:),b); s*(-a*(y(2,:)-y(1,:))+y(3,:)); -c*(y(2,:)+p*y(3,:)) ];
N = 10000;
yo = [.1;.15;.05];
[ts, ys]  = ode45(F, [0 N], yo, odeset('reltol', 1e-6, 'abstol', 1e-9));
x1 = (1-b)/((a/(1+a*p))-b);
y1 = a*p*x1/(1+a*p);
z1 = -y1/p;
figure;plot(ys(N-5000:end,1),ys(N-5000:end,2), '-');
xlabel('V1');ylabel('V2');title('Bifurcation Setup with PSOS');
epts = [-x1 -y1; 0 0; x1 y1];
hold on;
plot(epts(:,1),epts(:,2), 'or-');
m1 = y1/x1;
b1 = 0;
for k=length(ys)-5000:length(ys)-1
    flag = 0;
    if ys(k,2)>(m1*ys(k,1))
        flag = flag+1;
    else
        flag = flag-1;
    end
    if ys(k+1,2)>(m1*ys(k+1,1))
        flag = flag+1;
    else
        flag = flag-1;
    end
    if flag == 0
        m2 = (ys(k+1,2)-ys(k,2))/(ys(k+1,1)-ys(k,1));
        b2 = ys(k,2)-m2*ys(k,1);
        if m1-m2 ~= 0
            hold on; plot((-b1+b2)/(m1-m2),(b2*m1-b1*m2)/(m1-m2), 'og');
        end
    end
end
figure;xlabel('C1');ylabel('V1');
    for k=length(ys)-5000:length(ys)-1
      flag = 0;
     if ys(k,2)>(m1*ys(k,1))
         flag = flag+1;
     else
         flag = flag-1;
     end
     if ys(k+1,2)>(m1*ys(k+1,1))
         flag = flag+1;
     else
         flag = flag-1;
     end
     if flag == 0
            m2 = (ys(k+1,2)-ys(k,2))/(ys(k+1,1)-ys(k,1));
            b2 = ys(k,2)-m2*ys(k,1);
         if m1-m2 ~= 0
            hold on; plot(C1,(-b1+b2)/(m1-m2), '.k');
         end
     end
    end
Code for 2D Attractor in Surface of Section

(this code uses Boxcount.m by Moisy)

(this code also adapts code by Professor Barnett to find correlation dimension)

R = 1300; 
R1 = 1200;
R2 = 3300;
r = 85;
C1 = 4.32e-9;
C2 = 69e-9;
L = .0085; 
a = R1./R;
b = 1-R1./R2;
c = (C1.*(R1)^2)./L;
s = C1./C2;
p = r./R1;
F = @(t,y) [ a*(y(2,:)-y(1,:))-gbar(y(1,:),b); s*(-a*(y(2,:)-y(1,:))+y(3,:)); -c*(y(2,:)+p*y(3,:)) ];
N = 1000000;
yo = [.1;.15;.05];                    
[ts, ys]  = ode45(F, [0 N], yo, odeset('reltol', 1e-6, 'abstol', 1e-9));
x1 = (1-b)/((a/(1+a*p))-b);
y1 = a*p*x1/(1+a*p);
z1 = -y1/p;
m1 = y1/x1;
b1 = 0;
A2 = [];
Ai = 1;
for k=500:length(ys)-1
    flag = 0;
    if ys(k,2)>(m1*ys(k,1))
        flag = flag+1;
    else
        flag = flag-1;
    end
    if ys(k+1,2)>(m1*ys(k+1,1))
        flag = flag+1;
    else
        flag = flag-1;
    end
    if flag == 0
        nv = cross([x1; y1; 0],[0;0;1]);
        p1 = [ys(k,1); ys(k,2); ys(k,3)];
        p2 = [ys(k+1,1); ys(k+1,2); ys(k+1,3)];
        p3 = [0;0;0];
        if dot(nv,p2-p1) ~= 0
            u = (dot(nv,p3-p1))/(dot(nv,p2-p1));
            pti = p1+u*(p2-p1);
            A2(:,Ai) = pti;
            Ai = Ai + 1;
        end
    end
end
Af = [];
Af(1,:) = A2(3,:);
for k=1:length(A2)
    if A2(1,k)<0
        r2 = -sqrt(((A2(1,k))^2)+((A2(2,k))^2));
    else
        r2 = sqrt(((A2(1,k))^2)+((A2(2,k))^2));
    end
    Af(2,k) = r2;
end
lAf = size(Af) %display number of points of intersection
%BOXCOUNT - USES BOXCOUNT.M by F. Moisy
%see http://www.mathworks.com/matlabcentral/files/13063/content/boxcount/html/demo.html
% convert the list of 2D points x to a binary image array im
s = 2000;                    % choose size of image (don't exceed memory!)
im = zeros(s,s);
a = min(Af(1,:)); b = max(Af(1,:)); c = min(Af(2,:)); d = max(Af(2,:));
wid = max(b-a, d-c);
l = sub2ind(size(im), 1+floor((s-1)*(Af(1,:)-a)/wid), 1+floor((s-1)*(Af(2,:)-c)/wid));
im(l) = 1;
% show the binary image im...(which is the PSOS plane)
figure; imagesc(im'); set(gca, 'ydir', 'normal'); colormap(1-gray);title('image');
% show the local slope of the graph of log(N(eps)) vs log(1/eps):
figure; boxcount(im, 'slope');
%CORREL DIM - ADAPTED FROM CODE BY ALEX BARNETT
%finding correl dimension
m = zeros(2,2);
r = .1;
sumc = 0;
N = length(Af);
for n=1:N
     sumc = sumc + numel(find(sum((kron(Af(:,n), ones(1,N)) - Af).^2, 1) < r^2));
end
cr = (sumc./2)/((N.*(N-1))./2);
m(1,1) = log (cr);
m(2,1) = log (r);
r = .03;
sumc = 0;
for n=1:N
     sumc = sumc + numel(find(sum((kron(Af(:,n), ones(1,N)) - Af).^2, 1) < r^2));
end
cr = (sumc./2)/((N.*(N-1))./2);
m(1,2) = log (cr);
m(2,2) = log (r);
cd = (m(1,1)-m(1,2))./(m(2,1)-m(2,2))  %display correlation dimension
Code for Graphing Distance Between Orbits Over Time for Close ICs

(Plots for 2 values of C1 on the same graph)

R = 1300; 
R1 = 1200;
R2 = 3300;
r = 85;
C2 = 69e-9;
L = .0085; 
a = R1./R;
b = 1-R1./R2;
p = r./R1;
N = 3000;
C1 = 4.28e-9;
c = (C1.*(R1)^2)./L;
s = C1./C2;
F = @(t,y) [ a*(y(2,:)-y(1,:))-gbar(y(1,:),b); s*(-a*(y(2,:)-y(1,:))+y(3,:)); -c*(y(2,:)+p*y(3,:)) ];
%IC1
A1 = [];
yo = [.1;.15;.05];
disto1 = yo;
for n=1:N
    [ts1, ys1]  = ode45(F, [0 1], yo, odeset('reltol', 1e-9, 'abstol', 1e-12));
    yo = transpose(ys1(end,:));
    A1(n,:) = ys1(end,:);
    ['a' num2str(n)]    %this and similar code in subsequent loops just tracks progress
end
%IC2
A2 = [];
yo2 = [.1; .15; .05+1e-10];
disto2 = yo2;
for n=1:N
    [ts2, ys2] = ode45(F, [0 1], yo2, odeset('reltol', 1e-9, 'abstol', 1e-12));
    yo2 = transpose(ys2(end,:));
    A2(n,:) = ys2(end,:);
    ['b' num2str(n)]
end
D1 = (((A2-A1).^2)*ones(3,1)).^(.5);
C1 = 4.32e-9;
c = (C1.*(R1)^2)./L;
s = C1./C2;
F = @(t,y) [ a*(y(2,:)-y(1,:))-gbar(y(1,:),b); s*(-a*(y(2,:)-y(1,:))+y(3,:)); -c*(y(2,:)+p*y(3,:)) ];
%IC1
A1 = [];
yo = [.1;.15;.05];
disto1 = yo;
for n=1:N
    [ts1, ys1]  = ode45(F, [0 1], yo, odeset('reltol', 1e-9, 'abstol', 1e-12));
    yo = transpose(ys1(end,:));
    A1(n,:) = ys1(end,:);
    ['a' num2str(n)]
end
%IC2
A2 = [];
yo2 = [.1; .15; .05+1e-10];
disto2 = yo2;
for n=1:N
    [ts2, ys2] = ode45(F, [0 1], yo2, odeset('reltol', 1e-9, 'abstol', 1e-12));
    yo2 = transpose(ys2(end,:));
    A2(n,:) = ys2(end,:);
    ['b' num2str(n)]
end
D2 = (((A2-A1).^2)*ones(3,1)).^(.5);
figure;plot(log(D1), '-');xlabel('Time');ylabel('ln(Distance)');title('Distance Between Trajectories Over Time');axis([0 3000 -25 5]);
hold on; plot(log(D2), '-r');
Code to Model Experimental Attractor Using Time-Delay Embedding of Track from Sound File

d1 = wavread('p8wav_5s.wav');
tsd1 = [d1(3:end,1) d1(2:end-1,1) d1(1:end-2,1)];
figure; plot3(tsd1(:,1), tsd1(:,2), tsd1(:,3), '.', 'markersize', 1);
d2 = wavread('chaoswav_5s.wav');
tsd2 = [d2(3:end,1) d2(2:end-1,1) d2(1:end-2,1)];
figure; plot3(tsd2(:,1), tsd2(:,2), tsd2(:,3), '.', 'markersize', 1);
� http://www.scholarpedia.org/article/Chua_Circuit.


� Ibid.


� Cross.  http://www.cmp.caltech.edu/~mcc/chaos_new/Chua.html.


� Cross.  http://www.cmp.caltech.edu/~mcc/chaos_new/Chua_docs/works.html.


� This diagram comes from Cross’s website.  http://www.cmp.caltech.edu/~mcc/chaos_new/Chua.html.


� Cross.  http://www.cmp.caltech.edu/~mcc/chaos_new/Chua_docs/chua_eq.pdf.


� Cloyd 9.  Cloyd noticed sign errors in the G(X) function published by Cross.  G(X) here includes Cloyd’s corrections.


� Cloyd identified these values for C1 as nonchaotic and chaotic; a bifurcation diagram also justifies these values.


� The idea to use this method came from Cloyd’s paper; the Matlab code was my own.


� Bourke.  http://local.wasp.uwa.edu.au/~pbourke/geometry/planeline/.  Bourke provides a nice formula for finding plane-line intersections using vectors.  I used this method in my Matlab code.


� F. Moisy wrote a Matlab program to calculate the boxcounting dimension.  http://www.mathworks.com/ matlabcentral/files/13063/content/boxcount/html/demo.html. 


� Professor Barnett wrote the code to find the correlation dimension. 


� Alligood, et al. 390.


� Professor Charles Sullivan proposed this to improve the circuit.  I should also note that Professor Sullivan also helped me to debug my initial circuit.


� Professor Barnett suggested this modification.


� The circuit outputted V1 and V2 to the computer’s line-in jack.  A program called Zelscope created the oscilloscope-looking figures.  http://www.zelscope.com/.





