Math 53 Chaos!: Homework 6

due Fri Nov 9 ... but best if do relevant questions after each lecture

This week we jump to continuous time systems, ie ODEs. Sections 7.1-7.3 in the book are review of material from Math 23, so please read this.

T4.9 (see Example 4.5)
T4.11 b only (please make your proof hold water)
4.7 (careful: carpet not gasket)
4.9 (easy)
4.10 [Hint: think about T4.9]
4.12 (isn't this bizarre? Part a is certainly not a fractal)
A. Numerically estimating box-counting dimension of chaotic Hénon attractor. I have given you almost all of the code to do this, so it should not be a hard matlab exercise. Download the code henon_boxdim_hw6.m and fill in the first part to fill N iterates of the Hénon attractor with $a=1.4$ and $b=0.3$. The second part of the code (which relies on the code boxcount.m) estimates the boxdim. You will notice a 'plateau' region in the plot of the slope $\log N(\epsilon) / \log (1 / \epsilon)$. You will need to choose N large (eg start with 10^{3} and go up) so that the attractor 'fills in' properly - how large an N did you need so that the plateau region stabilizes? Print out your plot.
[BONUS: generate either a different fractal as a set of points x , or use the examples on the boxcount webpage to grab a natural fractal image (choose as high resolution as possible), and estimate its boxdim. Eg coastline, tree, lightning strike...]
B. Numerically estimating correlation dimension of chaotic Hénon attractor. Generate an orbit of length $N=10000$ (using the above parameters). Now compute for $r=0.1$ and $r=0.03$ the values of $C(r)$. Use this to estimate the correlation dimension. Is is close to that claimed in the text? Hint: you only need to write one simple loop, if I give you a command which returns the number of points in the list x which are within distance r of the $n^{\text {th }}$ point $\mathrm{x}(:, \mathrm{n})$. That command is
numel(find(sum((kron(x(:,n), ones(1,N)) - x).^2, 1) < r^2))
It will only work if x has exactly the size 2 -by- N. Your code should take about 30 seconds to run, so please debug if takes much longer.

T7.1 (review)
T7.2 (review)
T7.5

