Math 53 Chaos!: Homework 2

due Fri Oct 12 ... but best if do relevant questions after each lecture

Chapter 1 is such a lovely part of this book that here you're going to squeeze more out of it! Remember to show your reasoning/working, try and explain proofs as rigorously as you reasonably can.

T1.14 For b) only do RRL (not the other remaining six).
T1.16 In b) there's a typo: for f^{6} read G^{6}. Be careful to explain in each case if $x_{0} \neq 1 / 2$, why that must be so from the itinerary.
1.6 [You may use $1 / 4$ apart instead].
1.8 [easy but creative]

Challenge 1: This shows you the power of itineraries. Read p. 32-33 then work through Steps 1-5. Please write up (counting as regular HW questions): Step 3 (answering: which itinerary does y lie in?), and Step 4 (what is the form of the length- $(5 k+1)$ sequences, and what is the nearby point that eventually maps d apart?). BONUS: Use Step 4 to explain the correspondence in Step 5.

Lab Visit 1: Read p. 39-42, then adapt your Matlab code from HW1 to model the beetle populations, i.e. to numerically evolve Eqs. (1.6) for $N=200$ iterations. [Hint: make x a 3 -by- $(N+1)$ array instead of 1-by- $(N+1)$. Use each row to represent one of the variables L, P, and A. See last part of intro53.m].
a) Print out graphs of L_{t} (larval population) vs t (in time steps) for the two choices $\mu_{a}=0.27$ and $\mu_{a}=0.96$. If you got your equation correct this will show the same behavior as observed in experiments on p. 41. (You may choose 100 for all starting populations).
b) For $\mu_{a}=0.96$ make a 3 D scatter (i.e. no lines) plot of points $\left(L_{t}, P_{t}, A_{t}\right) \in \mathbb{R}^{3}$, and use it to answer: what kind (dimension, topology?) of attractor in \mathbb{R}^{3} does the aperiodic-looking orbit settle on to? [Hint: look up plot3; also axis vis3d will help. You may want to increase N but discard the first few hundred iterations].
c) Describe in 1 sentence how you could test whether this $\mu_{a}=0.96$ behavior is chaotic. BONUS: Perform this test-is it?

Comp expt 2.1: p. 52. Use my code explormap2d.m to mess around with the Hénon map and find the requested a value to 2 decimal places (trial and error? why is it hard?) where the orbit type changes.
2.1 (easy, review of Math 22)
2.3

T2.5 (easy)

