Math 50: Midterm 2-practise questions

February 18, 2006

I cannot guarantee these questions cover all the material that we covered from 4.3 to 5.8. Details not covered include: $1 /(n-1)$ estimate for $\hat{\sigma}^{2}$ of normal, ML estimate for uniform, failure of C - R bounds, Chebyshev and its failure. It is also about twice the actual length, but the questions are there to practise from. Use your HW7 first half, and old HW4-6 too!

1. Babe Ruth batted . 356 , i.e. 192 hits out of 540 bats. Based on that performance, construct a 95% confidence interval on probability of getting a future hit.
2. How large a sample n would you need to get a 95% confidence interval width of 3% in a yes/no survey sampled at random? Why doesn't your answer need to depend on the underlying p ?
3. Samples drawn from $f_{Y}(y: \theta)=\theta y^{\theta-1}$ for $0<y<1$, with parameter $\theta>0$.
(a) Find ML estimator for θ.
(b) Find (correctly-normalized) posterior pdf on θ if prior is uninformative. Harder one. [Hint: use $y^{\theta}=e^{\theta \ln y}$ to simplify]
(c) find the Method of Moments estimator for θ.
4. In some countries (for cultural reasons) the probability of having a female child is 0.45 . Estimate the probability of at least half of 1000 random children in this country being girls.
5. Demonstrate the ML estimator for p in a geometric pdf is $1 / \bar{k}$ where \bar{k} is the sample mean.
6. n samples are drawn from the uniform pdf on $0<y<\theta$.
(a) construct unbiased estimator for θ starting from $Y_{\text {min }}$.
(b) Prove whether this estimator is consistent or not. (harder).
7. The mean μ of n data samples from a Normal pdf with known σ is to be estimated. Calculate the Cramer-Rao lower bound on the variance of any estimator. Compare this to the variance of the ML estimate which is the sample mean \bar{Y}.
8. (a) Show \bar{Y} is an unbiased estimator of θ in the model pdf $f_{Y}(y ; \theta)=(1 / \theta) e^{-y / \theta}$.
(b) Find the relative efficiency of this estimator to just using a single sample Y_{1} as an estimator.
9. A coin of unknown bias is flipped twice and comes up with heads both times.
(a) find the posterior on p using an uninformative prior.
(b) repeat but using beta prior with $r=2, s=2$.
(c) By finding area under posterior in the former case, find the Bayesian answer to the question, what is the chances that the coin has a bias less than 0.3 , given the data?
10. (a) You arrive at a bus stop. What is the pdf on the wait time to the arrival of the $2^{\text {nd }}$ bus, if on average they come every 10 minutes, at completely random times?
(b) Find the chances of exactly 2 buses coming in the first 10 minutes.
(c) Find the chances of the second bus coming in the first 10 minutes. [Hint: think carefully about the difference!].

Useful formulae and pdfs:

$$
\begin{aligned}
f_{Y_{i}^{\prime}}(y) & =\frac{n!}{(i-1)!(n-i)!} F_{Y}(y)^{i-1}\left[1-F_{Y}(y)\right]^{n-i} f_{Y}(y) \\
f_{W}(w) & =\int f_{X}(x) f_{Y}(w-x) d x \quad \text { for } \quad W=X+Y \\
f_{W}(w) & =\int \frac{1}{|x|} f_{X}(w / x) f_{Y}(x) d x \quad \text { for } \quad W=X Y \\
f_{W}(w) & =\int|x| f_{X}(x) f_{Y}(w x) d x \quad \text { for } \quad W=Y / X \\
\text { poisson } p_{X}(k ; \lambda) & =e^{-\lambda} \frac{\lambda^{k}}{k!}, \text { for } k=0,1,2, \ldots, \quad \lambda \geq 0, \quad E(X)=\operatorname{Var}(X)=\lambda \\
\text { gamma } f_{Y}(y ; r, \lambda) & =\frac{\lambda^{r}}{\Gamma(r)} y^{r-1} e^{-\lambda y}, \text { for } y \geq 0, \quad E(Y)=\frac{r}{\lambda}, \quad \operatorname{Var}(Y)=\frac{r}{\lambda^{2}} \\
\text { beta } f_{Y}(y ; r, s) & =\frac{\Gamma(r+s)}{\Gamma(r) \Gamma(s)} y^{r-1}(1-y)^{s-1} \quad \text { for } 0 \leq y \leq 1, \quad E(Y)=\frac{r}{r+s} \\
\text { normal } f_{Y}(y ; \mu, \sigma) & =\frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{(y-\mu)^{2}}{2 \sigma^{2}}}, \quad E(Y)=\mu, \quad \operatorname{Var}(Y)=\sigma^{2} \quad \\
\text { negative binomial } p_{X}(k ; r, p) & =\binom{k-1}{r-1} p^{k}(1-p)^{k-r}, \text { for } k=r, r+1, \ldots, \quad E(X)=\frac{r}{p}, \quad \operatorname{Var}(X)=\frac{r(1-p)}{p^{2}}
\end{aligned}
$$

Far Right								
Tail Probabilities								
Z	$\mathrm{P}\{\mathrm{Z}$ to oo\}	Z	$\mathrm{P}\{\mathrm{Z}$ to 00\} \|	Z	$\mathrm{P}\{\mathrm{Z}$ to 00$\}$		Z	$\mathrm{P}\{\mathrm{Z}$ to 00$\}$
2.0	0.02275	3.0	0.001350	4.0	0.00003167		5.0	$2.867 \mathrm{E}-7$
2.1	0.01786	3.1	0.0009676	4.1	0.00002066		5.5	$1.899 \mathrm{E}-8$
2.2	0.01390	3.2	0.0006871	4.2	0.00001335		6.0	9.866 E-10
2.3	0.01072	3.3	0.0004834	4.3	0.00000854		6.5	$4.016 \mathrm{E}-11$
2.4	0.00820	3.4	0.0003369	4.4	0.000005413		7.0	$1.280 \mathrm{E}-12$
2.5	0.00621	3.5	0.0002326	4.5	0.000003398		7.5	3.191 E-14
2.6	0.004661	3.6	0.0001591	4.6	0.000002112		8.0	6.221 E-16
2.7	0.003467	3.7	0.0001078	4.7	0.000001300		8.5	$9.480 \mathrm{E}-18$
2.8	0.002555	3.8	0.00007235	4.8	$7.933 \mathrm{E}-7$		9.0	1.129 E-19
2.9	0.001866	3.9	0.00004810	4.9	$4.792 \mathrm{E}-7$	1	9.5	$1.049 \mathrm{E}-21$

Answers

1. $(0.316,0.396)$
2. $n \geq 4269$. indep of p since used worst case $p=1 / 2$.
3. a) $\hat{\theta}=-n / \sum_{i} \ln y_{i}$, b) $g(\theta \mid y)=\frac{\left(\sum_{i} \ln y_{i}\right)^{n}}{\Gamma(n+1)} \cdot \theta^{n} e^{\theta \sum_{i} \ln y_{i}}$, just a gamma, c) $\bar{y} /(1-\bar{y})$.
4. $F_{Z}(-3.16)=0.0008$ roughly, from table.
5. book p.348-9.
6. a) $\hat{\theta}=(n+1) Y_{\min }$, b) $f_{\hat{\theta}}(u) \rightarrow(1 / \theta) e^{-u / \theta}$ in the limit, which is a const pdf which doesn't converge on θ, so, no.
7. CR bound is σ^{2} / n, same as for sample mean estimator.
8. a) book 5.5.2 (see HW6), b) variance ratio is $1 / n$.
9. a) $3 \theta^{2}$, i.e. beta pdf with $r=3, s=1$, b) now has $r=4, s=2$, c) $(0.3)^{3}$
10. a) gamma with $r=2, \lambda=0.1$. b) Poisson with $\lambda T=1, k=2$, is $e^{-1} / 2$!, c) definite integral gives $1-2 e^{-1}$.
