Math 50: Midterm 2

65 minutes, 70 points. No algebra-capable calculators. Try to use your calculator minimally - you barely need it. Show working/reaonsing, since only that way could you get partial credit.

1. [10 points] IQ (the supposed 'intelligence quotient') is an integer scale designed to be normallydistributed in the population, with $\mu=100$ and $\sigma=15$.
(a) What fraction of the population is then required to be a 'moron' (a technical term, defined by $50<\mathrm{IQ}<75)$?
(b) What is the chances that the average IQ of a random sample of size 25 of the population has an IQ of at least 106 ? [Hint: IQ is an integer quantity; but you will not lose much for ignoring this]
2. [12 points] 1000 people randomly sampled from the US population are given a survey asking if they are in favor of gay marriage.
(a) Suppose 750 of the 1000 are in favor. Construct a 95% confidence interval on p, the fraction of the US population that are in favor.
(b) Suppose p is unknown and you want to design a survey to estimate p with a margin of error of 3%. What is the minimum number of people you need to survey?
3. [23 points] Data are drawn from the model pdf

$$
f_{Y}(y ; \theta)=2 y / \theta^{2} \quad \text { for } \quad 0<y<\theta, \quad \text { zero otherwise. }
$$

Given samples $\left\{y_{1}, \ldots, y_{n}\right\}$, we wish to estimate the parameter θ.
(a) Find the Method of Moments estimator $\hat{\theta}$.
(b) Is this estimator unbiased? (Prove your answer)
(c) What is the efficiency of this estimator, $\operatorname{Var}(\hat{\theta})$?
(d) As with the uniform pdf, the Maximum Likelihood estimator is $\hat{\theta}_{M L}=Y_{\max }$. What is the bias of this estimator? If needed, suggest a fix which makes it unbiased.
(e) Prove whether the estimator $\hat{\theta}_{M L}$ is consistent or not.
(f) Give an example of an estimator which is not consistent (either for the above pdf, or any pdf of your choosing).
4. [11 points] A coin of unknown bias $0 \leq p \leq 1$ is flipped 3 times and gives the data: heads, tails, heads.
(a) Assuming an uninformative prior, compute the (correctly-normalized) posterior pdf on p given this data.
(b) Given this posterior, compute $P(p \leq 1 / 2)$, that is, the Bayesian answer to the question, "what is the chance that the coin is biased in the tails direction?"
5. [14 points] Some distributions, such as those of salaries or earthquake strengths, can be modeled by a power-law pdf with parameter $\theta>0$, thus

$$
f_{Y}(y ; \theta)=\theta y^{-1-\theta}, \quad y \geq 1, \quad \text { zero otherwise. }
$$

(a) Given n samples $\left\{y_{i}\right\}$, find the ML estimator. [Hint: $y^{-\theta}=e^{-\theta \ln y}$]
(b) Find the Cramér-Rao bound on the variance of any estimator for θ. Be sure to state whether it's a lower or upper bound.
(c) What pdf is the conjugate prior for this power-law pdf? (you must show why)

Useful formulae and pdfs:

$$
\begin{aligned}
f_{Y_{i}^{\prime}}(y) & =\frac{n!}{(i-1)!(n-i)!} F_{Y}(y)^{i-1}\left[1-F_{Y}(y)\right]^{n-i} f_{Y}(y) \\
f_{W}(w) & =\int f_{X}(x) f_{Y}(w-x) d x \quad \text { for } \quad W=X+Y \\
f_{W}(w) & =\int \frac{1}{|x|} f_{X}(w / x) f_{Y}(x) d x \quad \text { for } \quad W=X Y \\
f_{W}(w) & =\int|x| f_{X}(x) f_{Y}(w x) d x \quad \text { for } \quad W=Y / X \\
\text { poisson } p_{X}(k ; \lambda) & =e^{-\lambda} \frac{\lambda^{k}}{k!}, \text { for } k=0,1,2, \ldots, \quad \lambda \geq 0, \quad E(X)=\operatorname{Var}(X)=\lambda \\
\text { gamma } f_{Y}(y ; r, \lambda) & =\frac{\lambda^{r}}{\Gamma(r)} y^{r-1} e^{-\lambda y}, \text { for } y \geq 0, \quad E(Y)=\frac{r}{\lambda}, \quad \operatorname{Var}(Y)=\frac{r}{\lambda^{2}} \\
\text { beta } f_{Y}(y ; r, s) & =\frac{\Gamma(r+s)}{\Gamma(r) \Gamma(s)} y^{r-1}(1-y)^{s-1} \quad \text { for } 0 \leq y \leq 1, \quad E(Y)=\frac{r}{r+s} \\
\text { normal } f_{Y}(y ; \mu, \sigma) & =\frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{(y-\mu)^{2}}{2 \sigma^{2}}}, \quad E(Y)=\mu, \quad \operatorname{Var}(Y)=\sigma^{2} \quad \\
\text { negative binomial } p_{X}(k ; r, p) & =\binom{k-1}{r-1} p^{k}(1-p)^{k-r}, \text { for } k=r, r+1, \ldots, \quad E(X)=\frac{r}{p}, \quad \operatorname{Var}(X)=\frac{r(1-p)}{p^{2}}
\end{aligned}
$$

CDF of standard normal follows on next page, and 'far-right tail probabilities' which are $1-F_{Z}(z)$ for large z up to 9.5.

Note you can get $F_{Z}(z)$ for $z<0$ via $1-F_{Z}(-z)$. I also encourage you to skip looking up $F_{Z}(z)$ values if pushed for time; just write F_{Z} (something).

Far Right							
Tail Probabilities							
Z	$\mathrm{P}\{\mathrm{Z}$ to oo\}	Z	$\mathrm{P}\{\mathrm{Z}$ to 00\} \|	Z	$\mathrm{P}\{\mathrm{Z}$ to 00$\}$	Z	$\mathrm{P}\{\mathrm{Z}$ to 00$\}$
2.0	0.02275	3.0	0.001350	4.0	0.00003167	5.0	$2.867 \mathrm{E}-7$
2.1	0.01786	3.1	0.0009676	4.1	0.00002066	5.5	$1.899 \mathrm{E}-8$
2.2	0.01390	3.2	0.0006871	4.2	0.00001335	6.0	9.866 E-10
2.3	0.01072	3.3	0.0004834	4.3	0.00000854	6.5	$4.016 \mathrm{E}-11$
2.4	0.00820	3.4	0.0003369	4.4	0.000005413	7.0	$1.280 \mathrm{E}-12$
2.5	0.00621	3.5	0.0002326	4.5	0.000003398	7.5	3.191 E-14
2.6	0.004661	3.6	0.0001591	4.6	0.000002112	8.0	6.221 E-16
2.7	0.003467	3.7	0.0001078	4.7	0.000001300	8.5	$9.480 \mathrm{E}-18$
2.8	0.002555	3.8	0.00007235	4.8	$7.933 \mathrm{E}-7$	9.0	$1.129 \mathrm{E}-19$
2.9	0.001866	3.9	0.00004810	4.9	$4.792 \mathrm{E}-7$	9.5	$1.049 \mathrm{E}-21$

