Math 50: Midterm 2

65 minutes, 70 points. No algebra-capable calculators. Try to use your calculator minimally—you barely need it. Show working/reaonsing, since only that way could you get partial credit.

- 1. [10 points] IQ (the supposed 'intelligence quotient') is an integer scale designed to be normallydistributed in the population, with $\mu = 100$ and $\sigma = 15$.
 - (a) What fraction of the population is then required to be a 'moron' (a technical term, defined by 50 < IQ < 75) ?

(b) What is the chances that the average IQ of a random sample of size 25 of the population has an IQ of at least 106? [Hint: IQ is an integer quantity; but you will not lose much for ignoring this]

- 2. [12 points] 1000 people randomly sampled from the US population are given a survey asking if they are in favor of gay marriage.
 - (a) Suppose 750 of the 1000 are in favor. Construct a 95% confidence interval on p, the fraction of the US population that are in favor.

(b) Suppose p is unknown and you want to design a survey to estimate p with a margin of error of 3%. What is the minimum number of people you need to survey?

3. [23 points] Data are drawn from the model pdf

 $f_Y(y; \theta) = 2y/\theta^2$ for $0 < y < \theta$, zero otherwise.

Given samples $\{y_1, \ldots, y_n\}$, we wish to estimate the parameter θ .

(a) Find the Method of Moments estimator $\hat{\theta}$.

(b) Is this estimator unbiased? (Prove your answer)

(c) What is the efficiency of this estimator, $Var(\hat{\theta})$?

(d) As with the uniform pdf, the Maximum Likelihood estimator is $\hat{\theta}_{ML} = Y_{max}$. What is the bias of this estimator? If needed, suggest a fix which makes it unbiased.

(e) Prove whether the estimator $\hat{\theta}_{ML}$ is consistent or not.

(f) Give an example of an estimator which is *not* consistent (either for the above pdf, or any pdf of your choosing).

- 4. [11 points] A coin of unknown bias $0 \le p \le 1$ is flipped 3 times and gives the data: heads, tails, heads.
 - (a) Assuming an uninformative prior, compute the (correctly-normalized) posterior pdf on p given this data.

(b) Given this posterior, compute $P(p \le 1/2)$, that is, the Bayesian answer to the question, "what is the chance that the coin is biased in the tails direction?"

5. [14 points] Some distributions, such as those of salaries or earthquake strengths, can be modeled by a power-law pdf with parameter $\theta > 0$, thus

$$f_Y(y;\theta) = \theta y^{-1-\theta}, \quad y \ge 1, \text{ zero otherwise.}$$

(a) Given *n* samples $\{y_i\}$, find the ML estimator. [Hint: $y^{-\theta} = e^{-\theta \ln y}$]

(b) Find the Cramér-Rao bound on the variance of any estimator for θ . Be sure to state whether it's a lower or upper bound.

(c) What pdf is the *conjugate prior* for this power-law pdf? (you must show why)

Useful formulae and pdfs:

$$\begin{split} f_{Y_i'}(y) &= \frac{n!}{(i-1)!(n-i)!} F_Y(y)^{i-1} [1 - F_Y(y)]^{n-i} f_Y(y) \\ f_W(w) &= \int f_X(x) f_Y(w-x) dx \quad \text{for } W = X + Y \\ f_W(w) &= \int \frac{1}{|x|} f_X(w/x) f_Y(x) dx \quad \text{for } W = XY \\ f_W(w) &= \int |x| f_X(x) f_Y(wx) dx \quad \text{for } W = Y/X \\ \text{poisson } p_X(k;\lambda) &= e^{-\lambda} \frac{\lambda^k}{k!}, \text{ for } k = 0, 1, 2, \dots, \quad \lambda \ge 0, \quad E(X) = \text{Var}(X) = \lambda \\ \text{gamma } f_Y(y;r,\lambda) &= \frac{\lambda^r}{\Gamma(r)} y^{r-1} e^{-\lambda y}, \text{ for } y \ge 0, \qquad E(Y) = \frac{r}{\lambda}, \quad \text{Var}(Y) = \frac{r}{\lambda^2} \\ \text{beta } f_Y(y;r,s) &= \frac{\Gamma(r+s)}{\Gamma(r)\Gamma(s)} y^{r-1} (1-y)^{s-1} \text{ for } 0 \le y \le 1, \quad E(Y) = \frac{r}{r+s} \\ \text{normal } f_Y(y;\mu,\sigma) &= \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(y-\mu)^2}{2\sigma^2}}, \quad E(Y) = \mu, \quad \text{Var}(Y) = \sigma^2 \\ \text{negative binomial } p_X(k;r,p) &= \left(\frac{k-1}{r-1}\right) p^k (1-p)^{k-r}, \text{ for } k = r, r+1, \dots, \quad E(X) = \frac{r}{p}, \quad \text{Var}(X) = \frac{r(1-p)}{p^2} \end{split}$$

CDF of standard normal follows on next page, and 'far-right tail probabilities' which are $1 - F_Z(z)$ for large z up to 9.5.

Note you can get $F_Z(z)$ for z < 0 via $1 - F_Z(-z)$. I also encourage you to skip looking up $F_Z(z)$ values if pushed for time; just write $F_Z($ something).

Probability Content

from -oo to Z

Z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890
2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964
2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981
2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986
3.0	0.9987	0.9987	0.9987	0.9988	0.9988	0.9989	0.9989	0.9989	0.9990	0.9990

	Tail Probabilities								
Z P{Z to oo}	Z P{Z to oo}	Z P{Z to oo}	z	P{Z to oo}					
.0 0.02275	3.0 0.001350	4.0 0.00003167	5.0	2.867 E-7					
2.1 0.01786	3.1 0.0009676	4.1 0.00002066	5.5	1.899 E-8					
2.2 0.01390	3.2 0.0006871	4.2 0.00001335	6.0	9.866 E-10					
2.3 0.01072	3.3 0.0004834	4.3 0.0000854	6.5	4.016 E-11					
2.4 0.00820	3.4 0.0003369	4.4 0.000005413	7.0	1.280 E-12					
2.5 0.00621	3.5 0.0002326	4.5 0.000003398	7.5	3.191 E-14					
2.6 0.004661	3.6 0.0001591	4.6 0.000002112	8.0	6.221 E-16					
2.7 0.003467	3.7 0.0001078	4.7 0.000001300	8.5	9.480 E-18					
2.8 0.002555	3.8 0.00007235	4.8 7.933 E-7	9.0	1.129 E-19					
2.9 0.001866	3.9 0.00004810	4.9 4.792 E-7	9.5	1.049 E-21					