Dave Raines's Splendiferous Mathematical Adventures in Food Court.

-Display T IIII	Fype ——	O LED
	000+	A
Stop	Reset	Snap
Events in 1	sec 🔟	▼ Se
Report 厂	Attach Di	splay 🔽

Gamma Distribution

$$f(x;k,\theta) = x^{k-1} \frac{e^{-x/\theta}}{\theta^k \Gamma(k)} \text{ for } x > 0$$

The Maximum Likelihood Estimate

$$\theta = \frac{1}{kN} \sum_{i=1}^{N} x_i$$

Waiting Time Between People

Bayesian Estimate on Rate

Expected Value = .0951 – same as MLE 95% confidence interval - .088 to .1022

Modeling Group Size As a Positive Poisson Distribution

$$f(y;\lambda) = \begin{cases} \frac{e^{-\lambda} \lambda^y}{y! (1-e^{-\lambda})} & y = 1, 2, \dots \text{ and } \lambda > 0, \\ 0, & y = 0. \end{cases}$$

$$\hat{\mu}_i = \frac{\hat{\lambda}_i}{1 - e^{-\hat{\lambda}_i}}$$

Group Size Results

Group size	group	predict
1	240	231.2
2	74	85.8
3	21	21.26
4	6	3.925
5	1	.9898
6	1	.116

average = $486/343 - 1.4169 = \frac{1.4169}{1.4169} = \frac{1.4169}{1.416$

This is the End. My Friend. The End.