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I. Introduction

How do perceptions of male attractiveness differ from perceptions of female 
attractiveness? This paper addresses one aspect of that problem by attempting to 
determine whether and how the distribution of male attractiveness differs from the 
distribution of female attractiveness—i.e., if a man is selected at random, what are the 
chances he will fall within a certain attractiveness range, and how will those chances 
differ from the chances a woman will fall within that same range? Intuitively, several 
answers to this question seem plausible. On one hand, it seems anecdotally to be true that 
there are few extremely attractive people, many average looking people, and few 
extremely unattractive people. Such logic could lead one to predict a normal 
attractiveness distribution. On the other hand, one could also argue that there are two 
distinct prototypes for people—an “attractive” prototype and an “unattractive” prototype. 
This reasoning might lead to a prediction of bimodality in the attractiveness distribution. 
The work here aims to see whether empirical analysis bears out either of these 
cognitively plausible models, or whether it suggests that a different process may be at 
work in either the male or the female case. 

Our investigation relies on a unique but somewhat compromised data source: the 
website www.hotornot.com. Users of this website rate pictures other users have posted of 
themselves on 1-10 attractiveness scale, with one being the low end and ten the high end. 
The website then computes and displays the average score each user has received, along 
with the total number of ratings the average is based on. With 75,000 pictures posted as 
of several years ago (http://www.hotornot.com/pages/about.html) and millions of votes 
cast in total, the site represents a potentially robust source of attractiveness data. It is 
clear, however, that the site’s audience may not be very representative of the population 
as a whole—it is restricted to computer users, who may tend to be younger than the 
general population, and it is most likely frequented by people who are more concerned 
with their appearances than the average person. These caveats, however, do not prevent 
the hotornot.com data from providing an interesting and convenient first look at 
perceptions of attractiveness in men and women. 

II. Data Collection

We collected a sample of 250 male scores and 250 female scores. Importantly, we 
ensured that each of these scores represented the average of at least 100 votes. This step 
was necessary to prevent the variance of the scores (which, as above, correspond to 



sample means of votes) from interfering with our plot of “true” attractiveness values, 
which we assumed the “true” averages would represent.

Establishing a 100 vote minimum allows for the construction of a 95% confidence 
interval of approximate width 1.75 even in an implausible worst case scenario. Since the 
variance of a score is equal to the variance of an individual vote, Yi, divided by the total 

number of votes (i.e., Var(Y
_

)   2

n , where  2 is the variance of an individual vote), the 
variance of the score for any person with at least 100 votes must be less than the variance 
of the score for a person with 100 votes, each of maximal variance. Clearly, the variance 
of an individual vote is maximized if it has a 50% chance of being a 1 and a 50% chance 
of being 10; i.e., for each vote Yi, P(Yi=1) =.5 and P(Yi=10)=.5. Then, E(Yi)=5.5, and 
E(Yi

2)=50.5. So, Var(Yi)= E(Yi
2)- E(Yi)

2=50.5-30.25=20.25. Assume we have taken 100 

samples from a distribution with this worst-case variance. Then, Var(Y
_

)=20.25/100, and 

we can set up a 95% confidence interval around Y
_

, given that 
Y 
 Var(Y)

_

 and 

2*
zF (1.96)  .95. Computing this interval yields a range around Y

_

 with approximate 

(total) width 1.76 within which we can be 95% sure the real average value will fall. Since 
we do not intend to evaluate the data using bin widths of less than one unit in width, a 
100 vote minimum seems acceptable to ensure that our average values will not diverge by 
more than one bin from the underlying true values—a precise enough fit to permit 
general distribution fitting, particularly given that it is almost impossible to imagine a 
case that would even approach the maximum variance. 

III. Graphs, Data and Initial Observations



The relevant statistics for the data:

Male Female
Mean 7.2572 6.36
Variance 2.0083 3.6451
Standard Deviation 1.417 1.9092
N 250 250

Even without the above information, a glance at the histograms reveals differences in the 
data for men and women. The amount of data collected at the lower end of the 
distribution is small compared to the upper end. In addition, both histograms favor a bi-
modal distribution – the female data more so than the male data – but since we had little 
experience with distributions of that nature, we were unable to analyze the data in that 
capacity.

IV. The Goodness of Fit Test

If attractiveness for men and women had some underlying distribution, we could test 
whether or not the data fit such a distribution. We decided to do Goodness-of-Fit tests,
using procedures explained in Sections 10.3 and 10.4 of the textbook, which test whether 
or not it is plausible that a certain dataset comes from a defined distribution. 

Our hypotheses were as follows:

H0: fY(y) = f0(y)

H1: fY(y) ≠ f0(y)



The three different pdf’s we tested were: normal pdf, uniform pdf, and beta pdf.

Normal:

Beta: 

Uniform: 

The test statistic for the Goodness-of-Fit Test is:
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D1 is distributed with a X2 distribution with t-1-s degrees of freedom where t = # of 
outcomes and s = # of estimated parameters.

The goodness-of-fit procedure is summarized below:

1. Divide ratings into t outcomes e.g. 0-1, 4-5, 9-10 etc.
2. Estimate the probability of getting a certain outcome if data came from the 

presumed distribution: pi.

3. Multiply (2) by n to get expected frequency: ei = npi (Note: npi ≥ 5 for all i)
4. Subtract observed from expected (Oi – ei), square the difference, divide by ei and 

add together t outcomes to get a Chi-squared random variable.
5. If variable D1 ≥X2

1-α, t – 1 – s then H0 should be rejected.

In our case, the parameters were unknown, so we needed to estimate parameters using 
Maximum Likelihood Estimation for the Beta and Normal distribution. As we learnt in 

class, the MLE estimate for the true mean and variance of a normal distribution is just Y
_

, 

the sample mean, and s2, the sample variance. For the uniform distribution between 3-10, 
we used a value of 1/θ = 1/(b-a) = 1/(10-3) = 1/7. 

The Beta distribution was a little trickier; we were unable to devise an analytical method 
for obtaining the MLE’s. We used the MATLAB command betafit to obtain the r and s
values that best fit our data. Since we were unable to calculate MLE’s rigorously, we did 
the next best thing: likelihood models for the parameters. Shown below are contour plots 
of a 2 parameter likelihood model for the beta pdf. As you can see, the red-hot areas 
correspond to the values obtained for r and s using the betafit command.

Female Male



We also have a 3D plot for the r and s values for the female data:

As can be seen, all three plots fit very well with our calculated parameters. We attempted 
to do a similar 3D plot for the male data, using a similar procedure, but ran into repeated 
problems with graphics rendering in MATLAB.

Thus, we fitted the following pdf’s to the data:

Normal PDF Beta PDF Uniform
μ σ r s θ

Male 7.2572 1.417 5.9 2.20 7



Female 6.3600 1.909 3.25 1.8 7

V. Goodness of Fit Measurements

The tables below show our calculated values for the Goodness of Fit measurements. The 
‘Expectations’ columns correspond to npi and the ‘Histogram’ column corresponds to Oi. 
As you can see, in order to accommodate the npi ≥ 5 rule, we had to bunch together some 
of the bins in the tail of the distribution. This reduced the number of degrees of freedom 
and had a somewhat adverse impact on the resulting Chi-squared statistic.

Female
Range Histogram Normal 

Expectations
Normal 
Errors

Beta 
Expectations

Beta 
Errors

Uniform 
Expectations

Uniform 
Errors

0-1 0 0.51616 0 0.44248 0 0 0
1-2 0 2.1748 0 3.4854 0 0 0
2-3 4 7.0046 3.3458 9.6701 6.7747 0 0
3-4 35 17.249 18.268 18.245 15.388 35.714 0.30229
4-5 24 32.48 2.214 28.005 0.57274 35.714 3.8423
5-6 45 46.772 0.067164 37.387 1.5501 35.714 2.4143
6-7 40 51.512 2.5728 44.447 0.44488 35.714 0.51429
7-8 40 43.389 0.26478 46.733 0.97 35.714 0.51429
8-9 38 27.951 3.6127 40.901 0.20573 35.714 0.14629
9-10 24 13.77 7.6007 20.685 0.53127 35.714 3.8423

Sum = 
37.945

Sum = 
26.437

Sum = 
11.576

The Chi-square values at the 0.05 significance levels and t-1-s degrees of freedom for the 
distributions and the results:

Normal: Critical value – 11.07, Observed – 37.945 => Reject the null hypothesis
Beta: Critical value – 11.07, Observed – 26.437 => Reject the null hypothesis
Uniform: Critical value – 12.95, Observed – 11.576 => Fail to reject the null hypothesis

Male
Range Histogram Normal 

Expectations
Normal 
Errors

Beta 
Expectations

Beta 
Errors

Uniform 
Expectations

Uniform 
Errors

0-1 0 0
1-2 0 0
2-3 0 0
3-4

0
0
0
1 6.35 4.507 35.714 33.7

4-5 10 13.75 0.633 13.75 1.0227 35.714 18.5
5-6 38 33.375 0.6409 28.525 3.12 35.714 0.148
6-7 37 59.8 0.1311 47.4 1.9 35.714 12.708
7-8 51 67.47 4.02 63.3 2.39 35.714 6.557
8-9 61 48.05 3.49 62.55 0.0384 35.714 17.929
9-10 32 20.625 6.27 28.125 0.533 35.714 0.383



Sum = 
15.185

Sum = 
13.511

Sum = 
89.925

The Chi-square values at the 0.05 significance levels and t-1-s degrees of freedom for the 
distributions and the results:

Normal: Critical value – 7.815, Observed – 15.185 => Reject the null hypothesis
Beta: Critical value – 9.488, Observed – 13.511 => Reject the null hypothesis
Uniform: Critical value – 12.952, Observed – 89.925 =>Reject the null hypothesis

Analysis: The only distribution that was not rejected was the Uniform distribution for 
Female data. This comes as somewhat of a surprise, since, upon visual inspection, it 
seems that the Beta distribution fits the Male data quite well. We hypothesize that 
additional data points, perhaps even 1 or 2 more in the lower tail-end, would’ve reduced 
the D1 statistic substantially. The scarcity of data in that region produced very large errors 
for both male and female data, as can be seen in the tables. In fact, the single largest error 
for the Beta distribution when fitted to males comes in the first outcome, where there is a 
single data-point, but a larger number is expected. The squaring compounds the error and 
gives us a large test-statistic. This can be seen as an idiosyncrasy of the Chi-squared 
distribution.

VI. T-test on sample means

We conducted a T-test on the data in order to determine if the means were equal. The 
procedure is the same as the one used in class.

H0: μf = μm

H1: μf ≠ μm

The critical value at the 95% level is 1.96. The combined sample variance was 2.8267 
and the resulting T-value was 5.9663; thus we can safely reject the null hypothesis. The 
chances that the two means are equal are less than 5%. This does not come as much of a 
surprise considering the histograms. 

VII. F-test on sample variances

We also conducted a F-test on the data to determine if the variances were equivalent. The 
procedure for the F-test was taken from Section 9.2 of the textbook. The rule for the 2-
sided tests, which we conducted, is:

If Sy
2/Sx

2 is ≥Fa/2, m-1, n-1 or ≤ F1-a/2, m-1, n-1, then reject the null hypothesis.

Sm
2 = 2.0083

Sf
2 = 3.6451



m (not to be confused with male) = n = 250. So the test was conducted at 249 degrees of 
freedom in a 95% confidence interval.

Critical values: (0.813, 1.21)
Observed F-value = 2.0083/3.6451 = 0.5510

Therefore, we reject the null hypothesis; there is a <5% chance that the underlying 
variances are equivalent.

VIII. Applications

It is natural to ask at this point how the distributional differences discussed above 
affect the way we “experience” the data—what does a beta distribution, after all, have to 
do with real life? One way to understand these differences is to compare the probability 
of randomly picking a very attractive man from the HotorNot listings against the 
probability of randomly picking a very attractive woman from the HotorNot listings. If 
we define “very attractive” individuals as those who have a score greater than 7, we can 
construct a binomial distribution that reflects this probability. Consider women first: 
since 97 of the 250 women in the sample have scores higher than 7, we can estimate the 
true probability p that a woman on HotorNot is very attractive with the ML 

estimator p
^

 97
250. Further, to get an idea of how precisely this estimator reflects the 

underlying reality, we can construct a 95% confidence interval around it. Since 

250
))388.1(*388(.))1(*(

^ ^^

)(   n
pppVar , and, as above, 2*

zF (1.96)  .95, this confidence interval 

is p
^

1.96  Var(p
^

), p 1.96  Var( p
^

)








 .3276,.4484 . So, if you bump into a random 

woman who’s listed on HotorNot, we can confidently say that the chances she will be 
very good looking are (roughly) somewhere between one third and four ninths. On the 
other side of the spectrum, if we define someone who is very unattractive as anyone who 
has a score below four, an analogous procedure reveals that the ML estimator for p=(the 

chance a woman listed on HotorNot has a score below 4) is p
^

 39
250 and that a 95% 

confidence interval for p
^

 is [.111, .201]; i.e., if you bump into another woman who’s 
listed on HotorNot, the chances that she’ll be very unattractive are likely somewhere 
between one ninth and two tenths. 

Comparing these results to equivalent statistics for the male sample produces 
startling results. 141 out of the 250 men fit the above definition of “very attractive,” 

allowing, as above, the construction of the ML estimator p
^

141
250 and of the 95% 

confidence interval [.502,.624] around that estimator. That is, we can say with 95% 
certainty that between ½ and 5/8 of men listed on HotorNot are “very attractive.” The 
result for very bad looking men is even more surprising—only one of the 250 men in our 
sample scored less than a four. With such a low frequency, it becomes inappropriate to 



plot confidence intervals using the normal curve. Considering instead a Poisson 

distribution with 
^

 ˆ p  n  (1/250)  250 1, we can estimate that the probability there 
are 0 or 1 attractive men in a group of 250 is almost ¾, while the probability that there 
are more than 4 attractive men in a group of 250 is less than 0.004. There are several 
ways to interpret the disparity between these results and those for women. The most 
obvious is to conclude that men are simply more attractive than women. Having become 
somewhat familiar with the website during the data collection process, I would argue 
that, at the very least, the differences between men and women are not as stark as they 
appear to be statistically. Rather, I would speculate that generally higher ratings for men, 
and, more notably, the almost total absence of men at the low end of the spectrum, are 
due primarily to differences in the attitude of the raters. Those who grade men have lower 
standards, so to speak, or perhaps are able to accept a broader variety of appearances. 
Those who grade women, on the other hand, may have a narrower concept of what it 
means to be attractive. Of course, these ideas are in keeping with the social consensus of 
our time, and so we should be careful in our decision to accept them in the face of 
ambiguous data (cf. The Mismeasure of Man). Regardless of our interpretation of the sex-
based asymmetries in our data, we can draw from these results a Lake Wobegone 
message—most of us, men or women, are more attractive than “average” (i.e., 5), and 
many more of us are very attractive than are very unattractive. 

Another interesting problem involving this data begins with a very shallow 
character. Consider a man who wants to ensure that he chooses the prettiest out of n
women from our sample. He is allowed to go on one date with each of them, and after 
that date, but before he sees any new women, he must choose whether to accept or reject 
that woman. If he accepts, he is committed to his choice, and if he rejects, he’s lost his 
chance with that woman. How should this man choose who to accept and who to reject? 
For convenience, we’ll assume here that the women are being pulled from a standardized 
normal distribution, that the man understands the distribution, and that he wants each of 
his decisions to maximize the expected score of the woman he ends up with. 

First consider the case where n=2. That is, the man is a on a date, and knows he 
will have one more date after this one. Clearly, he should accept the current woman if she 
has a rating above the mean, his expected score if he tries his luck again, and reject her 
otherwise. Further, using standardized variables, the pdf of his score over two dates can 

be viewed in terms of split cases:
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 , with the upper pdf 

being used if he accepts his first date and the lower pdf being used if he rejects his first 
date. Note that the upper pdf corresponds to the choice of a value from the top half of a 
normal distribution (with c being used as a normalizing constant), while the lower pdf is a 
standard normal. 

Moreover, his expected score with this strategy over two dates is 

(1
2)  ( 2

2
)  xex 2 / 2dx

0



  ( 1
2)  0, i.e., the probability he accepts his first date times his 

expected score given he accepts plus the probability he rejects his first date times his 
expected score given he rejects. Knowing this expected value makes it easy to compute 
his standards for the case n=3—if his third-to-last date has a score higher than his 



expected score over two dates, he should accept, and, if she has a lower score, he should 
reject. Generally, then, the critical score Yn

*, above which he accepts and below which he 
rejects his nth-to-last date, should be determined by 

Yn
*  (1 Fz (Yn1

* ))  ( c
2

)  xex 2 / 2dx 
Yn1

*



 Fz (Yn1
* )  (Yn1

* ). That is, his critical score is equal to

his expected value if he rejects his current date, which is equal to the probability he 
accepts his next date (i.e., the probability his next date has a score higher than Yn1

* , his 
cutoff score on that date) times his expected score if he accepts (where c is a normalizing 
constant chosen to set the area of the normal pdf between Yn1

*  and   to 1), plus the 
chances he rejects his next date times his expected score if he rejects (remember that 
(Yn1

* )  was chosen because it is the expected score over n-2 dates). Note that c will always 
be equal to 1

(1Fz (Yn1
* ))

 (since the area within the bounds of the integral is always 

1 Fz(Yn1
* )), so the equation above simplifies to Yn

*  ( 1
2

)  xex 2 / 2dx 
Yn1

*



 Fz (Yn1
* )  (Yn1

* ).  

Since computing the nth critical value requires only the (n-1)th critical value, a recursive 
algorithm is a natural computational choice here. Using such an algorithm, the 
standardized critical scores are as follows. The “W Score” column translates the critical 
score into the equivalent rating on the 1-10 scale using the sample mean and the ML 
variance estimator for the women’s distribution, and the “M Score” column does the 
same conversion for the men’s distribution. 

Dates 
remaining

Critical 
Score W Score M Score

5 0.9127 8.1 8.6
4 0.7904 7.9 8.4
3 0.6297 7.6 8.1
2 0.399 7.1 7.8
1 0 6.4 7.3

The graph below shows how the standardized cutoff scores grow as the number of 
remaining dates increases. Note that it bears a close resemblance to a log function, with a 
steep increase in low n-values slackening quickly around the n=50 mark. 



The moral of the story? If you’re looking to maximize the expected score of your 
partner, it’s important to know from the beginning that you’re going to go on at least a 
few dates, but, after a certain point, it starts to matter less how many more you’re 
planning on going on. Of course, this lesson depends entirely on the acceptance of the 
assumptions of normality and superficiality of judgment that we made when beginning 
this problem, so taking it seriously is not advisable.

IX. Conclusion

It would of course be a bad idea to draw any major conclusions about general 
attractiveness distributions from a relatively small sample of data from a non-
representative source. Though our study does show that there are significant differences 
between the distribution of male and female ratings on HotOrNot, and that neither the 
male nor the female distribution conforms to our original hypotheses about the data, these 
discrepancies could be attributed to any number of factors, including differences between 
the men and women who choose to post their pictures, differences between the people 
who choose to rate men and the people who choose to rate women, and, possibly, 



differences between the social paradigms for male and female attractiveness. A more 
detailed, better-controlled study would be necessary to parse these variables. 
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